• Title/Summary/Keyword: Impact Formula

Search Result 200, Processing Time 0.025 seconds

An Analysis of the Sensitivity of Input Parameters for the Seismic Hazard Analysis in the Korean Peninsula (한반도 지진위험도 산출을 위한 입력 파라메타의 민감도 분석)

  • Kim, Min-Ju;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • This study is to analyze the sensitivity for the parameters (a and b values, $M_{max}$, attenuation formula, and seismo-tectonic model) which are essential for the seismic hazard map. The values of each parameter were suggested by 10 members of the expert group. The results show that PGA increases as a value and $M_{max}$ become larger and as b value smaller. Big impact on the seismic hazard is observed for attenuation formula, a and b values although there is little impact on $M_{max}$ and seismo-tectonic model. These parameters with big impact require careful consideration for obtaining adequate values that well reflects the seismic characteristics of the Korean peninsula.

Impact ionization for GaAs using full band monte carlo simulation (Full 밴드 몬테칼로 시뮬레이션을 이용한 GaAs 임팩트이온화에 관한 연구)

  • 정학기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.11
    • /
    • pp.112-119
    • /
    • 1996
  • Impact ionization model in GaAs has been presented by modified keldysh formula with two sets of power exponent of 7.8 and 5.6 in study. Impact ionization rate is derived from fermil's golden rule and ful lenergy band stucture based on empirical pseudopotential method. Impact ionization rates show anisotropic property in low energy region (<3eV), but isotropic in high energy region (3>eV). Full band monte calo simulator is coded for investigating the validity of the GaAs impact ionization model, and validity is checked by comparing impact ionization coefficients with experimental values and ones in anisotropic model. Valley transitions to energy alteration are explained by investigating electron motion in brillouin zone for full band model to electric field variation.

  • PDF

A Study on the Penetration Resistance and Spalling Properties of High Strength Concrete by Impact of High Velocity Projectile (고속비상체의 충돌에 의한 고강도 콘크리트의 표면관입저항성 및 배면박리성상에 관한 연구)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Hwang, Heon-Kyu;Jeon, Joong-Kyu;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • Concrete materials subjected to impact by high velocity projectiles exhibit responses that differ from those when they are under static loading. Projectiles generate localized effects characterized by penetration of front, spalling of rear and perforation as well as more widespread crack propagation. The magnitude of damage depends on a variety of factors such as material properties of the projectile, impact velocity, the mass and geometry as well as the material properties of concrete specimen size and thickness, reinforcement materials type and method of the concrete target. In this study, penetration depth of front, spalling thickness of rear and effect of spalling suppression of concrete by fiber reinforcement was evaluated according to compressive strength of concrete. As a result, it was similar to results of the modified NDRC formula and US ACE formula that the more compressive strength is increased, the penetration depth of front is suppressed. On the other hand, the increase in compressive strength of concrete does not affect spalling of rear suppression. Spalling of rear is controlled by the increase of flexural, tensile strength and deformation capacity.

A Study on Development of Damage Impact Distance Calculation Formula for Accident Response and Prevention in case of Leakage of Substances Prepared for Evacuation of Residents in Chungju (충주의 주민대피 대비물질 누출사고 시 사고대응·예방을 위한 피해영향거리 산정식 개발 연구)

  • Jeon, Byeong-Han;Kim, Hyun-Sub;Lee, Myeong-Ji;Yun, Jeong-Hyeon;Jung, Woong-Yul;Oh, Seung-Bo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.703-712
    • /
    • 2021
  • In this study, a formula was derived to calculate the damage impact distance using the Chemical Accident Response Information System (CARIS) so that local governments can decide on the evacuation and notification of 13 types of substances. The National Institute of Chemical Safety selected 16 out of 97 types of accident preparedness substances in 2018 and called them residents' evacuation preparedness substances. In a chemical accident, local governments should prepare for resident notification, such as emergency disaster texts. Using the CARIS in Chungju, this study modeled the damage-affected distances of 13 types of substances for the evacuation of residents. Under all conditions, the coefficient of determination R2 was 0.99 or higher, representing a range of at least 0.9921 to a maximum 0.9999. The relative standard deviation between the damage impact distance obtained using the calculation formula, and the CARIS result was compared. The minimum separation distance was corrected considering the actual chemical accident response situation, and the range was found to be between 0.58 and 5.97%. The damage impact distance can be calculated at the site using the calculation formula derived from the research, and local governments can determine whether to evacuate or notify residents.

A Study on Characteristics of Passenger Injury for Effective Impact Speed in Vehicles Frontal Collision and Rear-ender (차량 정면충돌 및 추돌시 유효충돌속도에 따른 탑승자 상해특성에 관한 연구)

  • Cho, Joeng-Kwon;Yoon, Jun-Kyu;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.239-247
    • /
    • 2015
  • Recently, various research studies on frontal collision and rear-ender which occur more frequently compared to others are underway as the public interest on them is growing. This study analyzes scientifically the relationship between effective impact speed and injury incidence for vehicle crash accident reconstruction and presents a relevant model formula. Because real vehicle experiments have certain limitations such as possible injuries, this study efforts to collect and analyze as many materials as possible to substitute real vehicle experiments, including data from various collision tests and human experiments. As a result, this study present a threshold in which head-on collisions and rear impacts do not cause injuries under 7 km/h of effective impact speed, and suggests a model formula showing that injury extent is linearly proportional to effective impact speed through collision speed and amount of plastic deformation. In conclusion, a model formula for estimating effective impact speed and injury incidence newly proposed in this study is expected to be used as a minimum standard of judgment in disputes on the injury extent of passenger in head-on collisions and rear impacts. Furthermore its availability in terms of technological analysis in legal arguments is expected to be very high if this study will be enhanced by referring to scientific analyses of various real accidents so as to apply it in various types of collision accidents.

Evaluation of Impact Resistance Performance of High Strength Concrete by Projectile Size and Compressive Strength (압축강도 및 비상체의 크기에 따른 고강도 콘크리트의 내충격 성능평가)

  • Kim, Hong-Sub;Kim, Gyu-Yong;Miyauchi, Hiroyukui;Nam, Jeong-Soo;Jeon, Young-Seok;Koo, Kyoung-Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.7-10
    • /
    • 2011
  • In this study, evaluation system of impact resistance performance is proposed. Compressive strength of concrete is 40, 60 and 80MPa. It evaluate impact resistance performance to use projectile 6, 7 and 8mm size. As a result, safety performance is more higher when the compressive strength is increased in. Compared with Hughes's formula, evaluation system of impact resistance performance is appropriated.

  • PDF

Assessment of Vibration Transmissibility for Prediction of Heavy Floor Impact Sound (중량 바닥충격음 예측을 위한 진동 전달률 산정 연구)

  • 김하근;김명준;오양기
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.415-422
    • /
    • 2003
  • In an apartment buildings, the floor Impact sound from upstairs has been regarded as a main source of noise causing discontentment among occupants. To set the optimum design for sound insulation, it is necessary to suggest the useful tools or technique that predict the floor impact sound. The purpose of this study is to suggest the supplementary formula(equation) and constant k considering vibration transmissibility in order to predict more precisely heavy floor impact sound by Impedance Method that have been briskly studied in Japan from comparing the measured values with the predicted values. The analyzed results had showed that if the damping material was glass wool or rubber, k=5 was proper and if the damping material was polystyrene foam, k>5 was desirable.

Review of appropriateness of existing formula for estimating the depth of scour and the experimental study on development of the formula to estimated the depth of scour (기존 세굴심 산정식의 적정성 검토 및 세굴심 산정식 개발에 대한 실험적 연구세요)

  • Choi, Han-Kuy;Lee, Yeong-Seop
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.67-75
    • /
    • 2009
  • In this study, the investigation of hydraulic characteristics and the pier data for the rivers in Youngseo area of Gangwon Province was carried out and the evaluation and comparison between the values from existing formulas and the values from the model tests was conducted, along with the statistical sensitivity analysis of the elements influencing the scour. As a result, the deviation between the values calculated from the existing formulas and the model tests appeared to be 1.09%~63.98% as the piers were getting larger, which indicated that the existing formulas were not appropriate to estimate the scour in the rivers in Gangwon area. And the formula which estimates the scour with the size of the pier only, among the existing ones, was far behind in estimating the sensitivity because of insufficient incorporation of the hydraulic characteristics, though it is convenient to estimate the value. The sensitivity analysis of the value from the model tests and the depth of the scour proved the significant impact on scour by the size of the pier and water depth, indicating 64% and 36%, respectively. In this study, the formula developed through the regression analysis performed based on the values from the model tests, which appeared to be appropriate for the rivers in Gangwon Province, was proposed.

  • PDF

Experimental Study on Impact Loads Acting on Free-falling Modified Wigley

  • Hong, Sa-Young;Kim, Young-Shik;Kyoung, Jo-Hyun;Hong, Seok-Won;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • The characteristics of an impact load and pressure were experimentally investigated. Drop tests were carried out using a modified Wigley with CB = 0.56. The vertical force, pressures, and vertical accelerations were measured. A 6-component load cell was used to measure the forces, piezo-electric sensors were used to capture the impact pressure, and strain-gauge type accelerometers were used to measure the vertical accelerations. A 50-kHz sampling rate was applied to capture the peak values. The repeatability of the measured data was confirmed and the basic characteristics of the impact load and pressure such as the linearity to the falling height were observed for all of the measurements. A simple formula was derived to extract the physical impact load from the measured force based on a simple mass-sensor-mass diagram, which was validated by comparing impact forces with existing data using the mathematical model of Faltinsen and Chezhian (2005). The effects of the elasticity of the model and change in acceleration during the water entry were investigated. It is interesting to observe that the impact loads occurred and reached peak values at the same time duration after water entry for all drop heights.

Impact location on a stiffened composite panel using improved linear array

  • Zhong, Yongteng;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.173-182
    • /
    • 2019
  • Due to the degradation of beamforming properties at angles close to $0^{\circ}$ to $180^{\circ}$, linear array does not have a complete $180^{\circ}$ inspection range but a smaller one. This paper develops a improved sensor array with two additional sensors above and below the linear sensor array, and presents time difference and two dimensional multiple signal classification (2D-MUSIC) based impact localization for omni-directional localization on composite structures. Firstly, the arrival times of impact signal observed by two additional sensors are determined using the wavelet transform and compared, and the direction range of impact source can be decided in general, $0^{\circ}$ to $180^{\circ}$ or $180^{\circ}$ to $360^{\circ}$. And then, 2D-MUSIC based spatial spectrum formula using uniform linear array is applied for locate accurate position of impact source. When the arrival time of impact signal observed by two additional sensors is equal, the direction of impact source can be located at $0^{\circ}$ or $180^{\circ}$ by comparing the first and last sensor of linear array. And then the distance is estimated by time difference algorithm. To verify the proposed approach, it is applied to a quasi-isotropic epoxy laminate plate and a stiffened composite panel. The results are in good agreement with the actual impact occurring position.