• Title/Summary/Keyword: Impact Force Characteristic

Search Result 53, Processing Time 0.029 seconds

Analysis of Effect of Pantograph Cover on the Current Collection Quality of High Speed Train using Real Train Experiment (실차시험을 통한 팬터그래프 커버가 고속열차의 집전성능에 미치는 영향에 대한 분석)

  • Oh, Hyuck Keun;Kim, Seogwon;Cho, Yong-hyun;Kwak, Minho;Kwon, Sam Young
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.409-416
    • /
    • 2016
  • The contact force characteristic between the pantograph and the catenary wire represents the current collection quality of trains; it should be precisely controlled under international standard. Recently, a noise reduction cover has been installed around the pantograph of high speed trains. However, little study on the contact force by the pantograph cover has been conducted. In this study, the impact on the current collection performance of the pantograph cover was analyzed by dynamic contact force measurement using a next generation high speed train (HEMU-430X). As a result, it was confirmed that the attachment of a pantograph cover could lower the mean contact force by approximately 50N at 300km/h. In addition, the pure difference of the average contact force by the presence of pantograph cover, except for the static pressure, was measured and found to be up to 110N at 300km/h. It was also found that the standard deviation of the contact force of 3~5N could be changed by use of a pantograph cover.

A Study on Mechanical Properties of Wood-Polymer Composites due to Environmental Characteristic (목재 고분자 복합재료의 환경 특성에 따른 기계적 물성연구)

  • Lee, Joong-Hee;Jeon, Sang-Jin;Heo, Seok-Bong;Kim, Hong-Gun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.91-94
    • /
    • 2005
  • Polypropylene as a matrix has been used for wood polymer composites(WPC). In preparing WPC, the coupling agent, Polypropylene grafted Maleic Anhydride(PP-G-MA) was used in order to obtain a good interfacial bonding force between matrix and fillers and dispersion of wood powders. In this study, the effects of wood powder contents and water absorption on the mechanical properties were experimentally investigated. The tensile strength and flexural strength of composites reached its peak value when the wood powder content was around 60 wt%. However, the peak value of the impact was observed about 30 wt% of wood powder content. The tensile strength and flexural strength increase with increasing the wood power contents. But the impact strength decrease with increasing the wood powder contents. The slight change was observed with the water absorption in the WPC. The optimal condition of the compositions such as Anti-oxidant and UV stabilizers for the outdoor application was suggested in this research.

  • PDF

Development and Performance Evaluation of In-situ Dynamic Stiffness Analyzer (원위치 동적강성 분석기의 개발 및 성능평가)

  • Kim, Dong-Ju;Byun, Yong-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.41-50
    • /
    • 2019
  • Stiffness characteristic of subgrade is one of the most important aspects for the design and evaluation of pavement and railway. However, adequate field testing methods for evaluating the stiffness characteristics of the subgrade have not been developed yet. In this study, an in-situ dynamic stiffness analyzer (IDSA) is developed to evaluate the characteristics of subgrade stiffness along the depth, and its performance is evaluated in elastic materials and a compacted soil. The IDSA consists of a falling hammer system, a connecting rod, and a tip module. Four strain gauges and an accelerometer are installed at the tip of the rod to analyze the dynamic response of the tip generated by the drop of hammer. Based on the Boussinesq's method, the stiffness and Young's modulus of the specimens can be calculated. The performance of IDSA was tested on three elastic materials with different hardness and a compacted soil. For the repeatability of test performance, the dynamic signals for force and displacement of the tip are averaged from the hammer impact tests performed five times at the same drop height. The experimental results show that the peak force, peak displacement, and the duration depend on the hardness of the elastic materials. After calculating the stiffness and elastic modulus, it is revealed that as the drop height of hammer increases, the stiffness and elastic moduli of MC nylon and the compacted soil rapidly increase, while those of urethanes less increase.

Experimental Study of Evaluating Shoe Cushioning System Using Shock Absorption Pocket (신발의 보행 충격 완화 장치에 대한 충격 흡수력의 실험적 평가)

  • Sun Chang-Hwa;Son Kwon;Moon Byung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.241-248
    • /
    • 2006
  • Shoe cushioning systems are important to prevent body injuries. This study developed and evaluated a cushioning system to reduce impact force on the heel. The cushioning system suggested consist of a polyurethane pocket, which contains water and porous grains of open cell to dissipate the energy effectively. Load-displacement curves fer the shoe cushioning system were obtained from an instrumented testing machine and the results were compared with various pockets with air, water or grains. Mechanical testings showed that the pocket with 5g porous grain was the best for the cushioning system. This system can be applied to the design of various kind of sport shoes.

Crashworthiness Analysis of railway Rolling Stock (철도차량 충돌 안전성 분석)

  • 이강욱;백운천;박상규
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.393-400
    • /
    • 1998
  • In this study, the crash situations and general crash analysis methods of railway rolling stocks were explained. To calculate the applied load and the maximum stress in the carbody when two aluminum railway vehicles were shunted, the finite element models for the carbody and the coupling system were made. The characteristic curve of draft gear which had a function to reduce impact force was modeled by nonlinear bar elements and the carbody was modeled by shell elements. Two shunting speeds, 5km/h and 8km/h, were considered and the results were analyzed and compared with static analysis case. Also, the aluminum railway vehicle with 60km/h was crashed against rigid wall to examine the global behavior of the carbody.

  • PDF

A Study on Parameter and Behavior for Composite Steel-Concrete Structure of Sandwich System (샌드위치식 강-콘크리트 복합구조체의 매개변수 및 거동특성 연구)

  • 정연주;정광희;이필승;박성수;황일선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.75-82
    • /
    • 2000
  • A huge offshore structures such as immersed tunnel, ice-resisting wall are continuously subjected to large force from water pressure, wave action and impact loads. Composite steel-concrete structure of sandwich system has profitable advantages for a huge offshore structures. This composite structures should exhibit a high degree of strength and ductility, because of concrete confining effect and the property of steel plate. Therefore, it endures large deformation and absorbs a great deal of energy until failure. In this study, nonlinear analysis for composite steel-concrete structure of sandwich system was carried out, and certify the effects of various parameters, elastic·plastic behavior characteristic, load-carrying and failure mechanism.

  • PDF

The influence of dynamic force balance on the estimation of dynamic uniaxial compression strength (암석시료 내 동적하중 분배특성이 동적일축압축강도에 미치는 영향성에 관한 연구)

  • Oh, Se-Wook;Min, Gyeong-Jo;Park, Se-Woong;Park, Hoon;Suk, Chul-Gi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.37 no.1
    • /
    • pp.14-23
    • /
    • 2019
  • It has been an always issue for the blasting or the impact analysis to consider the strength characteristics of the rock materials associate with loading rate dependency. Due to the nature of transient loading, the dynamic rock test requires a careful technique to achieve the stress equilibrium state of the specimen. In this study, to investigate the relationship between the rock dynamic strength and the stress equilibrium state, a series of dynamic uniaxial compression tests for Pocheon granite were performed. As a result, the unbalanced stress state on the specimen can lead to the premature failure on the specimen and the less estimation of dynamic strength characteristic as well as the overestimation of strain rate. Consequently, a careful consideration of rock fracture process to achieve the dynamic force balance on the specimen should be required to make an reasonable evaluation of rock dynamic strength.

Estimation of maneuvering characteristic of training ship Baek-Kyung according to water depth (수심에 따른 실습선 백경호의 조종성능 추정)

  • Chun-Ki LEE;Kyung-Jin RYU;Yoo-Won LEE;Su-Hyung KIM
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.3
    • /
    • pp.261-263
    • /
    • 2023
  • Recently, universities of fisheries and institutions related to fisheries are actively carrying out a project to build new fisheries training ships. These new fisheries training ships are significantly larger in size and longer in length than the previous ships. In addition, these new ships basically have space that can accommodate more than 100 crew and passenger. On the other hand, they are excluded from IMO maneuverability evaluation since the size of these ships are still less than 100 m in length (LBP). These results have had an impact on the study of maneuverability of fishing vessels including the fisheries training ships. Against these backgrounds, the authors conducted a study to estimate the maneuvering characteristics of fisheries training ship Baek-Kyung according to depth in order to prepare a maneuvering characteristic index that enables the large fisheries training ships to navigate more safely using a modified empirical formula. It was confirmed that the maneuvering characteristics of Baek-Kyung changed significantly as the values of the hydrodynamic force coefficients changed as the water depth gradually decreased from around 1.5 (approx. 8 m in depth) of the ratio of the water depth to the ship draft. The results of this study will not only help navigators understand the maneuvering characteristics of Baek-Kyung, but also serve as an indicator when navigating in shallow water. In addition, the accumulation of these results will serve as a basis for future study on maneuverability of fishing vessel types.

A analysis of friction relation between tennis outsole and tennis playing surfaces (테니스화겉창과 테니스 스포츠바닥재간의 마찰관계상관 분석)

  • Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.361-380
    • /
    • 2002
  • The purposes of this study were to a analysis of friction relation between tennis outsole and tennis playing surfaces. Tennis footwear is an important component of tennis game equipment. It can support or damage players performance and comfort. Most importantly athletic shoes protect the foot preventing abrasions and injuries. Footwear stability in court sports like tennis is incredibly important since it is estimated that as many as 45% of all lower extremity injuries occur in the foot and ankle. The friction force is the force exerted by a surface as an object moves across it or makes an effort to move across it. The friction force opposes the motion of the object. Friction results when two surfaces are pressed together closely, causing attractive intermolecular forces between the molecules of the two different surfaces. The outsole provides traction and reduces wear on the midsole. Today's outsoles address sport specific movements (running versus pivoting) and playing surface types. Different areas of the outsole are designed for the distinct frictional needs of specific movements. Traction created by the friction between the outsole and the surface allows the shoe to grip the surface. As surfaces, conditions and player motion change, traction may need to vary. An athletic shoe needs to grip well when running but not when pivoting. Laboratory tests have demonstrated force reductions compared to impact on concrete. There is a correlation between pain, injury and surface hardness. These are a variety of traction patterns on the soles of athletic shoes. Traction like any other shoe characteristic must be commensurate and balanced with the sport. The equal and opposite force does not necessarily travel back up your leg. The surface itself absorbs a portion of the force converting it to other forms of energy. Subsequently, tennis court surfaces are rated not only for pace but also for the percentage of force reduction.

The Design of Parameters to Improve Actuating Performance in High Frequency Vibro-Hammer(HFVH) and the Study of Characteristic Propagation and Attenuation of Piling Vibration (초고주파 진동항타기의 구동 성능향상을 위한 파라미터 설계 및 항타진동의 전달과 감쇠특성에 관한 연구)

  • Jang, Tae-In;Park, Joon-Hyuk;Baek, Yoon-Su;Kim, Sung-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.763-773
    • /
    • 2004
  • This paper suggests the 2 D.O.F mathematical model of the High Frequency Vibro-Hammer (HFVH), introduces an experimental method for measuring of the attenuation of piling vibration and proves what experiments are coincident with the equation of wave propagation. As vibratory installation of piles and casings has many economic merits in the construction field, most of all contractors prefer to vibratory pile driving method than the other. Compared to impact pile driving, vibratory installation has the advantage of reducing vibration or noise pollution and can drive piles under high frequency. Experiments serve estimations of capabilities and limitations of the HFVH's excitation force and finding of sensitivity for important soil resistance parameters. Also, we discuss the HFVH that can drive with three kinds of input waves (triangular, sine and square wave) and propose the design of parameters to improve actuating performance in it.