• Title/Summary/Keyword: Impact Damage

Search Result 1,655, Processing Time 0.032 seconds

Low-Velocity Impact Damage Detection for Gr/Ep Laminates Using PVDF Sensor Signals (PVDF 센서신호를 이용한 Gr/Ep 적층판의 저속충격 손상탐지)

  • 박찬익;김인걸;이영신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.158-162
    • /
    • 2003
  • The PVDF(polyvinylidene fluoride) film sensor as one of smart sensors has good characteristics to detect the impact damages of composite structures. The capabilities of the PVDF film sensor for evaluating impact behaviors and damages of Gr/Ep laminates subjected to low-velocity impact were examined. From sensor signals, the specific wave-forms implying the damage were detected. The wavelet transform(WT) and Short Time Fourier Transform(STFT) were used to decompose the piezoelectric sensor signals in this study. The impact behaviors of Gr/Ep laminates were simulated and the impact forces were reconstructed using the sensor signals. Finally, the impact damages were predicted by finite element analysis with the reconstructed forces. For experimental verification, a series of low-velocity impact tests from low energy to damage-induced energy were carried-out. The extent of damage in each case was examined by means of ultrasonic C-scan and the measured damage areas were agreed well with the predicted areas by the F.E.A.

  • PDF

A Study on the Damage Damage Dection of Woven Cabon/Epoxy Laminates for the Hybrid Composite Train Bodyshell (하이브리드 복합재 철도 차량의 결함검출에 관한 연구)

  • Lee, Jae-Heon;Kim, Jung-Seok;Yeom, Ki-Young;Lee, Dong-Seon;Cheong, Seong-Kyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.264-267
    • /
    • 2005
  • Impact damages are very important in the perspective of residual strength of composite structures such as aircrafts, ships, and trains because those damages are sometimes not visible on the surface of the point of impact and the impact resistance of laminated composites is usually not so high. Thus, the impact characteristics of laminated composites should he investigated for the safety of composite structures. This paper investigates the low-velocity impact and damage detection conducted on woven carbon/epoxy laminates. Experimental results show that the type of damage is dependent on the impact energy level and the delamination area becomes larger as the impact energy increases.

  • PDF

Impact Damage of CFRP Laminated Shells with the Curvature (곡률반경을 갖는 CFRP 적층쉘의 충격손상)

  • 황재중;이길성;김영남;나승우;심재기;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1341-1344
    • /
    • 2003
  • Studies on impact damage of composite laminate shells were fewer compared with those on impact behaviors to analyze time-load, displacement-load and impact energy - energy absorption. Up to date the studies were not enough to demonstrate suitability of their results because they were dependent on theories and numerical analyses. In particular, it is a well-known fact that there was a correlation between initial peak load and damage resistance of composite material flat plates imposed with low-speed impact, but studies on composite material shells with curvature were also very few. Actually structures such as wings or moving bodies of airplanes, motor cases and pressure containers of rockets are circular. And as low-speed impact load is imposed for optimal design of take-off and landing, and containers of airplanes, it is very important to analyze evaluation of behaviors and damaged areas. Therefore, in this paper to evaluate the impact characteristics of the CFRP laminate shell according to size of curvature quantitatively, it was to identify energy absorption and impact damage instruments according to change of impact speed.

  • PDF

Evaluation of Residual Strength Under Impact Damage in Woven CFRP Composites (평직 CFRP 복합재료의 충격잔류강도 평가)

  • Choi, Jung-Hun;Kang, Min-Sung;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.654-663
    • /
    • 2012
  • Damage induced by low velocity impact loading in aircraft composite is the form of failure which is frequently occurred in aircraft. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and carrying load of the composite laminates is considerably reduced. The objective of this study is to evaluate and predict residual strength behavior of composite laminates by impact loading and for this, tensile test after impact was carried out on composite laminates made of woven CFRP.

Impact damage and residual bending strength of CFRP composite laminates involved difference of fiber stacking orientation and matrics

  • Sim, Jae-Ki;Yang, In-Young;Oh, Taek-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.152-162
    • /
    • 1993
  • The purpose of this study is to investigate problems of residual bending strength and the impact damage experimentally when CFRP composite laminates are subjected to Foreign object damage. The specimens composed of four types of CR/EPOXY and a CF/PEEK composite laminates which involved difference of fiber stracking orientation and matrics. The result were summariged as follows : 1) It is found that both orthotropic and guasi-isotropic composite laminates are increasimg lineally between impact energy and damage delamination area. 2) Delamination devel- opment energy(mm$^{2}$J) OF cf/epoxy composite aminates is less than that of CF/PEEK. 3) When impact energy is applied to specimens within 3J, the residual strength of orthotropic is greater than guasi-isotropic composite laminates. On the other hand, it is predicted that residual bending strength of orthotropic composite laminates is less than that of quasi-isotropic when impact energy is more thaen 3J. 4) It is found in CF/PEEK that for the impact side compression, residual of bending strength versus impact energy is almost constant, while in case of impact side tension, residual bending strength is decreased rapidly near 1.2J. of impact energy due to the effect of delamination buckling.

  • PDF

Numerical Simulation of High Velocity Impact of Circular Composite Laminates

  • Woo, Kyeongsik;Kim, In-Gul;Kim, Jong Heon;Cairns, Douglas S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.236-244
    • /
    • 2017
  • In this study, the high-velocity impact penetration behavior of $[45/0/-45/90]_{ns}$ carbon/epoxy composite laminates was studied. The considered configuration includes a spherical steel ball impacting clamped circular laminates with various thicknesses and diameters. First, the impact experiment was performed to measure residual velocity and extent of damage. Next, the impact experiment was numerically simulated through finite element analysis using LS-dyna. Three-dimensional solid elements were used to model each ply of the laminates discretely, and progressive material failure was modeled using MAT162. The result indicated that the finite element simulation yielded residual velocities and damage modes well-matched with those obtained from the experiment. It was found that fiber damage was localized near the impactor penetration path, while matrix and delamination damage were much more spread out with the damage mode showing a dependency on the orientation angles and ply locations. The ballistic-limit velocities obtained by fitting the residual velocities increased almost linearly versus the laminate diameter, but the amount of increase was small, showing that the impact energy was absorbed mostly by the localized impact damage and that the influence of the laminate size was not significant at high-velocity impact.

Improvement of Out-of-Plane Impact Damage Resistance of CFRP Due to Through-the-Thickness Stitching

  • Yoshimura, Akinori;Nakao, Tomoaki;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.121-134
    • /
    • 2009
  • The present study investigated, both experimentally and numerically, the improvement of low-velocity impact damage resistance of carbon fiber reinforced plastic (CFRP) laminates due to through-the-thickness stitching. First, we conducted drop-weight impact tests for stitched and unstitched laminates. The results of damage inspection confirmed that stitching did improve the impact damage resistance, and revealed that the improvement effect became greater as the impact energy increased. Moreover, the stitching affected the through-the-thickness damage distribution. Next, we performed FEM analysis and calculated the energy release rate of the delamination crack using the virtual crack closure technique (VCCT). The numerical results revealed that the stitching affected the through-the-thickness damage distribution because the stitch threads had a marked effect on decreasing both the modes I and II energy release rate around the bottom of the laminate. Comparison of the results for models that contained delaminations of various sizes revealed that the energy release rate became lower as delamination size increased; therefore the stitching improved the impact resistance more effectively when the impact energy was higher.

Transient dynamic analysis of impact damage behavior for concrete (콘크리트의 순간동역학적 충돌손상 거동해석)

  • Park, Tae-Hyo;Noh, Myung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.857-860
    • /
    • 2006
  • In the present study, the method and procedure for analysis of impact damage behavior for concrete under penetration and perforation of projectile is investigated. Conservation law, equation of motion, initial and boundary conditions, and FEM formulation are introduced and derived respectively. Specially, the constitutive equation which rate-dependent damage combined with rate-dependent plasticity within the appropriate framework of theory of thermodynamics is examined. This paper aimed at the review with respect to impact damage models for concrete to develop that model. This paper is a basis research for the development of impact damage model for concrete.

  • PDF

Fatigue Life Predication of Impacted Laminates Under Block Loading (블록하중을 받는 충격손상 적층복합재료의 피로수명 예측)

  • Kim, Jeong-Gyu;Gang, Gi-Won;Yu, Seung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1089-1096
    • /
    • 2001
  • This paper presents the fatigue behavior of composite materials with impact-induced damage under 2 level block loading. For this purpose, the 2 level block loading fatigue tests were performed on the impacted composite laminate. The fatigue life of the laminate under the block loading is greatly influenced by the impact damage; the effect of impact damage can be characterized by the present impact damage parameter. Based on this parameter, the model is developed to predict the fatigue life under block loading and the results by this model agree well with experimental results regardless of applied impact energy. Also, stochastic model is established to describe the variation of cumulative damage behavior and fatigue life due to the material nonhomogeneity.

Low Velocity Impact Characteristics of Glass/phenol Composite Laminates (Glass/phenol 복합적층판의 저속충격 특성)

  • Kim, Jae-Hoon;Kim, Hu-Shik;Park, Byoung-Joon;An, Byoung-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.228-233
    • /
    • 2001
  • It is well known that composite laminates are easily damaged by low velocity impact. The damage of composite laminates subjected to impact loading are occurred matrix cracking, delamination, and fiber breakage. The damage of matrix cracking and delamination are reduced suddenly the compressive strength after impact. This study is to evaluate impact characteristics and the relationship between impact force and inside damage of composite laminates by low velocity impact loading. UT C-scan is used to determine impact damage areas by impact loading.

  • PDF