• 제목/요약/키워드: Immunogenic cell death

검색결과 6건 처리시간 0.024초

Immunogenic Cell Death Induced by Ginsenoside Rg3: Significance in Dendritic Cell-based Anti-tumor Immunotherapy

  • Keum-joo Son;Ki ryung Choi;Seog Jae Lee;Hyunah Lee
    • IMMUNE NETWORK
    • /
    • 제16권1호
    • /
    • pp.75-84
    • /
    • 2016
  • Cancer is one of the leading causes of morbidity and mortality worldwide; therefore there is a need to discover new therapeutic modules with improved efficacy and safety. Immune-(cell) therapy is a promising therapeutic strategy for the treatment of intractable cancers. The effectiveness of certain chemotherapeutics in inducing immunogenic tumor cell death thus promoting cancer eradication has been reported. Ginsenoside Rg3 is a ginseng saponin that has antitumor and immunomodulatory activity. In this study, we treated tumor cells with Rg3 to verify the significance of inducing immunogenic tumor cell death in antitumor therapy, especially in DC-based immunotherapy. Rg3 killed the both immunogenic (B16F10 melanoma cells) and non-immunogenic (LLC: Lewis Lung Carcinoma cells) tumor cells by inducing apoptosis. Surface expression of immunogenic death markers including calreticulin and heat shock proteins and the transcription of relevant genes were increased in the Rg3-dying tumor. Increased calreticulin expression was directly related to the uptake of dying tumor cells by dendritic cells (DCs): the proportion of CRT+CD11c+cells was increased in the Rg3-treated group. Interestingly, tumor cells dying by immunogenic cell death secreted IFN-γ, an effector molecule for antitumor activity in T cells. Along with the Rg3-induced suppression of pro-angiogenic (TNF-α) and immunosuppressive cytokine (TGF-β) secretion, IFN-γ production from the Rg3-treated tumor cells may also indicate Rg3 as an effective anticancer immunotherapeutic strategy. The data clearly suggests that Rg3-induced immunogenic tumor cell death due its cytotoxic effect and its ability to induce DC function. This indicates that Rg3 may be an effective immunotherapeutic strategy.

Immunogenic cell death in cancer immunotherapy

  • Minji Choi;Jisoo Shin;Chae-Eun Lee;Joo-Yoon Chung;Minji Kim;Xiuwen Yan;Wen-Hao Yang;Jong-Ho Cha
    • BMB Reports
    • /
    • 제56권5호
    • /
    • pp.275-286
    • /
    • 2023
  • Cancer immunotherapy has been acknowledged as a new paradigm for cancer treatment, with notable therapeutic effects on certain cancer types. Despite their significant potential, clinical studies over the past decade have revealed that cancer immunotherapy has low response rates in the majority of solid tumors. One of the key causes for poor responses is known to be the relatively low immunogenicity of solid tumors. Because most solid tumors are immune desert 'cold tumors' with antitumor immunity blocked from the onset of innate immunity, combination therapies that combine validated T-based therapies with approaches that can increase tumor-immunogenicity are being considered as relevant therapeutic options. This review paper focuses on immunogenic cell death (ICD) as a way of enhancing immunogenicity in tumor tissues. We will thoroughly review how ICDs such as necroptosis, pyroptosis, and ferroptosis can improve anti-tumor immunity and outline clinical trials targeting ICD. Finally, we will discuss the potential of ICD inducers as an adjuvant for cancer immunotherapy.

Dead cell phagocytosis and innate immune checkpoint

  • Yoon, Kyoung Wan
    • BMB Reports
    • /
    • 제50권10호
    • /
    • pp.496-503
    • /
    • 2017
  • The human body loses several billions of cells daily. When cells die in vivo, the corpse of each dead cell is immediately cleared. Specifically, dead cells are efficiently recognized and cleared by multiple types of neighboring phagocytes. Early research on cell death focused more on molecular mechanisms of cell death regulation while the cellular corpses were merely considered cellular debris. However, it has come to light that various biological stimuli following cell death are important for immune regulation. Clearance of normal dead cells occurs silently in immune tolerance. Exogenous or mutated antigens of malignant or infected cells can initiate adaptive immunity, thereby inducing immunogenicity by adjuvant signals. Several pathogens and cancer cells have strategies to limit the adjuvant signals and escape immune surveillance. In this review, we present an overview of the mechanisms of dead cell clearance and its immune regulations.

Anticancer Drugs at Low Concentrations Upregulate the Activity of Natural Killer Cell

  • Hyeokjin Kwon;Myeongguk Jeong;Yeeun Kim;Go-Eun Choi
    • 대한의생명과학회지
    • /
    • 제29권3호
    • /
    • pp.178-183
    • /
    • 2023
  • Natural killer (NK) cells are innate cytotoxic lymphoid cells that actively prevent neoplastic development, growth, and metastatic dissemination in a process called cancer immunosurveillance. Regulation of the cytotoxic activity of NK cells relies on integrated interactions between inhibitory receptors and numerous activating receptors that act in tandem to eliminate tumor cells efficiently. Conventional chemotherapy is designed to produce an anti-proliferative or cytotoxic effect on early tumor cell division. Therapies designed to kill cancer cells and simultaneously maintain host anti-tumor immunity are attractive strategies for controlling tumor growth. Depending on the drug and dose used, several chemotherapeutic agents cause DNA damage and cancer cell death through apoptosis, immunogenic cell death, or other forms of non-killing (i.e., mitotic catastrophe, senescence, autophagy). Among stress-induced immunostimulatory proteins, changes in the expression levels of NK cell activating and inhibitory ligands and tumor cell death receptors play an important role in the detection and elimination by innate immune effectors including NK cells. Therefore, we will address how these cytotoxic lymphocytes sense and respond to high and low concentrations of drug-induced stress to the drug cisplatin, among the various types of drugs that contribute to their anticancer activity.

Checkpoint-inhibition in ovarian cancer: rising star or just a dream?

  • Pietzner, Klaus;Nasser, Sara;Alavi, Sara;Darb-Esfahani, Silvia;Passler, Mona;Muallem, Mustafa Zelal;Sehouli, Jalid
    • Journal of Gynecologic Oncology
    • /
    • 제29권6호
    • /
    • pp.93.1-93.11
    • /
    • 2018
  • The introduction of checkpoint inhibitors revolutionized immuno-oncology. The efficacy of traditional immunotherapeutics, like vaccines and immunostimulants was very limited due to persistent immune-escape strategies of cancer cells. Checkpoint inhibitors target these escape mechanisms and re-direct the immune system to anti-tumor toxicity. Phenomenal results have been reported in entities like melanoma, where no other therapy was able to demonstrate survival benefit, before the introduction of immunotherapeutics. The first experience in ovarian cancer (OC) was reported for nivolumab, a fully human anti-programmed cell death protein 1 (PD1) antibody, in 2015. While the data are extraordinary for a mono-immunotherapeutic agent and very promising, they do not match up to the revolutionary results in entities like melanoma. The key to exceptional treatment response in OC, could be the identification of the most immunogenic patients. We hypothyse that BRCA mutation could be a predictor of improved response in OC. The underlying DNA-repair-deficiancy should result in increased immunogenicity because of higher mutational load and more neoantigen presentation. This hypothesis was not tested to date and should be subject to future trials. The present article gives an overview of the immunologic background of checkpoint inhibition (CI). It presents current data on nivolumab and other checkpoint-inhibitors in solid tumors and OC specifically and depicts important topics in the management of this novel substance group, such as side effect control, diagnostic PD-1/programmed cell death-ligand 1 (PD-L1) expression assessment and management of pseudoprogression.

Designing a novel mRNA vaccine against Vibrio harveyi infection in fish: an immunoinformatics approach

  • Islam, Sk Injamamul;Mou, Moslema Jahan;Sanjida, Saloa;Tariq, Muhammad;Nasir, Saad;Mahfuj, Sarower
    • Genomics & Informatics
    • /
    • 제20권1호
    • /
    • pp.11.1-11.20
    • /
    • 2022
  • Vibrio harveyi belongs to the Vibrio genus that causes vibriosis in marine and aquatic fish species through double-stranded DNA virus replication. In humans, around 12 Vibrio species can cause gastroenteritis (gastrointestinal illness). A large amount of virus particles can be found in the cytoplasm of infected cells, which may cause death. Despite these devastating complications, there is still no cure or vaccine for the virus. As a result, we used an immunoinformatics approach to develop a multi-epitope vaccine against most pathogenic hemolysin gene of V. harveyi. The immunodominant T- and B-cell epitopes were identified using the hemolysin protein. We developed a vaccine employing three possible epitopes: cytotoxic T-lymphocytes, helper T-lymphocytes, and linear B-lymphocyte epitopes, after thorough testing. The vaccine was developed to be antigenic, immunogenic, and non-allergenic, as well as having a better solubility. Molecular dynamics simulation revealed significant structural stiffness and binding stability. In addition, the immunological simulation generated by computer revealed that the vaccination might elicit immune reactions in the actual life after injection. Finally, using Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher codon adaptation index value, which was then included in the cloning vector pET2+ (a). Altogether, our experiment implies that the proposed peptide vaccine might be a good option for vibriosis prophylaxis.