• 제목/요약/키워드: Immunity responses

검색결과 444건 처리시간 0.021초

선천면역 및 적응면역에서 비만세포의 기능 (The Role of Mast Cells in Innate and Adaptive Immunity.)

  • 김영희
    • 생명과학회지
    • /
    • 제18권6호
    • /
    • pp.891-896
    • /
    • 2008
  • The function of mast cells as effector cells in allergy has been extensively studied. Mast cells activated through high affinity IgE-receptor ($Fc{\varepsilon}RI$) release diverse mediators, and lead to smooth muscle constriction, vasodilation, increase of vascular permeability, leukocyte recruitment and activation, mucus secretion, and tissue proliferation and remodeling. However, various other immunological and non-immunological signals can lead to the activation of mast cells. In resent years, mast cells have been identified to be involved in a complex range of immune functions. Mast cells can be important as key players in the regulation of innate as well as adapted immune responses, and may influence the development of allergy, autoimmune disorder and peripheral tolerance. This review summarizes the recent advances in the understanding of effector functions of mast cells in immune responses.

Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

  • Park, Chang-Jin;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제31권4호
    • /
    • pp.323-333
    • /
    • 2015
  • As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

베타-카로틴의 면역생물학적 연구 (Immunobiological Studies on Beta-Carotene)

  • 안영근;구자돈;김정훈;김봉희;조필형;구교임
    • 약학회지
    • /
    • 제36권5호
    • /
    • pp.412-426
    • /
    • 1992
  • Effects of beta-carotene on the immunobiological responses were studied in ICR mice. ICR male mice were divided into 8 groups (10 mice/group), and beta-carotene at doses of 4, 20 and 100 mg/kg were orally administered to ICR mice once daily for 28 consecutive days. Cyclophosphamide (CY) was injected intraperitoneally (i.p.) to ICR mice with a single dose of 5 mg/kg body weight at 2 days before secondary immunization. Mice were sensitized and challenged with sheep red blood cells (5-RBC). Immune responses were evaluated by humoral immunity, cellular immunity and non-specific immunity. The results of this study were summarized as follows: (1) Beta-carotene significantly increased the weight ratios of liver, spleen and thymus to body weight depending on dose, and significantly increased the increasing rate of body weight and the number of circulating leukocyte. (2) Beta-carotene dose-dependently increased hemagglutination titer, Arthus reaction and hemolytic plaque forming cell related to humoral immunity. (3) Beta-carotene significantly increased delayed-type hypersensitivity reaction and rosette forming cell related to cellular immunity. (4) Beta-carotene dose-dependently increased phagocytic activity, and significantly increased natural killer (NK) cell activity. (5) Beta-carotene dose-dependently inhibited reductions in humoral immunity, cellular immunity, NK cell activity and phagocytic activity by treatment with CY.

  • PDF

손 반사요법이 만성질환자의 생리.정서적 반응과 면역 반응에 미치는 효과 : 만성신부전증과 암 환자 중심으로 (Effects of Hand Reflexology on Physiological.Emotional Responses and Immunity in the Patients with Chronic illness; Chronic renal failure patients and Cancer patients)

  • 이정희;오세영;박옥순;권인각;정미아;이은아
    • 대한간호학회지
    • /
    • 제32권5호
    • /
    • pp.716-726
    • /
    • 2002
  • The purpose of this study was to explore the effects of hand reflexology on the physiological.emotional responses and immunity of the patients with chronic illness. This study looked specifically at patients with chronic renal failure(CRF) and cancer patients. Method: This study was designed as a quasi-experimental nonequivalent control group pre and post test. Subjects were 54 patients who received dialysis and chemotherapy in one hospital. Thirty-one patients were assigned to the experimental group and 23 to the control group. The hand reflexology was applied to both hands of the experiment group for ten minutes each time, 5 times during three days. For data collection, physiological lab levels, immune cells of blood and questionnaires for emotional responses were measured before and after the program. Result: BT of the experiment group was decreased significantly on both of the 1st and the 5th application. PR & BP were decreased significantly on the 1st times, but not 5th times. Hb levels of the experimental group were significantly increased. And emotional responses, vigor and mood scores of the experiment group were significantly increased. B cell & CD19 were increased significantly on the experiment group. Suppressor T cell and NK cell showed significant decrease after the program, but no significant differences between the groups. Conclusion: We have found that the hand reflexology helps the chronic patients to improve physiological.emotional responses and the immune reaction. Through this result, the hand reflexology is effective as a intervention of psychoneuroimmunologic function.

Chitinase 3-like-1, a novel regulator of Th1/CTL responses, as a therapeutic target for increasing anti-tumor immunity

  • Kim, Do-Hyun;Choi, Je-Min
    • BMB Reports
    • /
    • 제51권5호
    • /
    • pp.207-208
    • /
    • 2018
  • Chitinase-Like Proteins (CLPs) are an evolutionarily conserved protein which lose their enzymatic activity for degrading chitin macromolecules. Chitinase-3-like-1 (Chi3l1) is a type of CLP that is highly expressed in epithelial cells, macrophages, etc., and is known to have correlations with type 2 inflammation and cancer. Although the increased level of Chi3l1 in the blood was reported in various disease patients, the function of Chi3l1 in adaptive immunity has been totally unknown. Recently, we found that Chi3l1 is expressed in T cells and has a negative regulatory role in T-cell activation and proliferation. A genetic ablation study of Chi3l1 in T cells showed hyperresponsiveness to TcR stimulation, which increased proliferation and Th1 differentiation. A significant increase of $IFN{\gamma}$ signaling in Chi3l1-deficient T cells synergistically increased Th1 and CTL functions against melanoma cells in vitro and in vivo. In addition, targeted knockdown by Chi3l1 siRNA complexed with the cell-penetrating peptide dNP2, which showed decreased pulmonary melanoma metastasis with increased infiltration of Th1 and CTL in the lung. This study first suggests that Chi3l1 is a novel regulator of Th1/CTL responses and could be a target for treating cancer to increase tumor immunity.

월견초종자유가 생쥐의 면역반응에 미치는 영향 (Effects of Evening Primrose Oil on the Immune Responses in Mice)

  • 안영근;오연준;김정훈
    • 약학회지
    • /
    • 제36권2호
    • /
    • pp.93-109
    • /
    • 1992
  • The purpose of this experiment was to investigate both the immunomodulatory effect of evening primrose(EP) oil and the effects of EP oil on immunoregulation by cyclophosphamide in mice. EP oil at doses of 0.1, 0.2 and 0.4 ml/kg were orally administered to ICR male mice once daily for 28 consecutive days. Cyclophosphamide was injected intraperitoneally to ICR mice with a single dose of 5 mg/kg at 2 days before secondary immunization. Mice were sensitized and challenged with sheep red blood cells(S-RBC). Immnune responses were evaluated by humoral and cellular immune responses and non-specific immune response. The results of this study were summarized as follows; (1) The humoral immune responses such as hemagglutination titer(HA), hemolysin titer(HY), Arthus reaction and plaque forming cell(PFC) were significantly enhanced in the low dose EP oil administered groups(0.1 and 0.2 ml/kg). However, in the high dose EP oil administered group(0.4 ml/kg) the responses were significantly lowered. (2) In the case of cellular immune responses, delayed type hypersensitivity reaction(DTH) was significantly decreased in EP oil whereas rosette forming cell(RFC) was remarkably enhanced. (3) Activities of natural killer cells and phagocyte were generally enhanced in EP oil. In addition, serum albumin and globulin were also increased.

  • PDF

Overview of Innate Immunity in Drosophila

  • Kim, Tae-Il;Kim, Young-Joon
    • BMB Reports
    • /
    • 제38권2호
    • /
    • pp.121-127
    • /
    • 2005
  • Drosophila protects itself from infection by microbial organisms by means of its pivotal defense, the so-called innate immunity system. This is its sole defense as it lacks an adaptive immunity system such as is found in mammals. The strong conservation of innate immunity systems in organisms from Drosophila to mammals, and the ease with which Drosophila can be manipulated genetically, makes this fly a good model system for investigating the mechanisms of virulence of a number of medically important pathogens. Potentially damaging endogenous and/or exogenous challenges sensed by specific receptors initiate signals via the Toll and/or Imd signaling pathways. These in turn activate the transcription factors Dorsal, Dorsal-related immune factor (Dif) and Relish, culminating in transcription of genes involved in the production of antimicrobial peptides, melanization, phagocytosis, and the cytoskeletal rearrangement required for appropriate responses. Clarifying the regulatory interactions between the various pathways involved is very important for understanding the specificity and termination mechanism of the immune response.

Quercetin이 마우스의 면역반응에 미치는 영향 (Effects of Quercetin on the Immune Responses in Mice)

  • 안영근;박영길;김정훈
    • 약학회지
    • /
    • 제35권5호
    • /
    • pp.401-415
    • /
    • 1991
  • Effects of quercetin on the specific and non-specific immune responses were studied in vivo. Quercetin at a dose of 2.5, 5, 10, 20 and 40 mg/kg were orally administered to ICR male mice once daily for 28 consecutive days. Cyclophosphamide was injected intraperitoneally to ICR mice with a single dose of 5 mg/kg 2 days before secondary immunization. Mice were sensitized and challenged with sheep red blood cells (S-RBC). Immune responses were evaluated by humoral and cellular immune reponses and non-specific immune response. The results of this study were summarized as followings; 1. Quercetin significantly decreased the body weight, and introduced the atrophy of liver, spleen and thymus gland dose-dependently, but increased the numbers of white blood cell. 2. Querectin significantly depressed the hemagglutination titer, Arthus reaction and hemolytic plaque forming cell. 3. Quercetin significantly depressed the delayed type hypersensitivity and rosette forming cell. 4. Quercetin at a dose of 2.5, 5 and 40 mg/kg significantly depressed phagocytic activity. 5. Quercetin at a dose of 10 and 20 mg/kg significantly increased natural killer cell activity.

  • PDF

Regulation of Th2 Cell Immunity by Dendritic Cells

  • Hyeongjin Na;Minkyoung Cho;Yeonseok Chung
    • IMMUNE NETWORK
    • /
    • 제16권1호
    • /
    • pp.1-12
    • /
    • 2016
  • Th2 cell immunity is required for host defense against helminths, but it is detrimental in allergic diseases in humans. Unlike Th1 cell and Th17 cell subsets, the mechanism by which dendritic cells modulate Th2 cell responses has been obscure, in part because of the inability of dendritic cells to provide IL-4, which is indispensable for Th2 cell lineage commitment. In this regard, immune cells other than dendritic cells, such as basophils and innate lymphoid cells, have been suggested as Th2 cell inducers. More recently, multiple independent researchers have shown that specialized subsets of dendritic cells mediate Th2 cell responses. This review will discuss the current understanding related to the regulation of Th2 cell responses by dendritic cells and other immune cells.

인체의 영양상태가 세포매개성 및 체액성 면역 반응에 미치는 영향 (Effect of Nutritional Status on Cell-mediated and Humoral Immunity in Female College Students)

  • 김현미
    • Journal of Nutrition and Health
    • /
    • 제27권5호
    • /
    • pp.483-494
    • /
    • 1994
  • The purpose of this study was to investigate the effect of nutritional status on the cell-mediated and humoral immunity in female college students. The nutritional status of twenty subjects was determined by six-days food records, anthropometric measurements, and biochemical assessments of serum nutrients. Cell-mediated and humoral immunity of the subjects was analyzed by in vivo and in vitro assessments. The results were summerized as follows : First, The average daily energy intake was 1437Kcal(CHO : PRO : FAT = 61:13:26), which corresponds to 71.9% of RDA. Anthropometric measurements showed that 50% of the subjects was under-weight(BMI<20), only 5% was over-weight(25

  • PDF