• 제목/요약/키워드: Immunity Function

검색결과 300건 처리시간 0.645초

Suppression of the Toll-like receptors 3 mediated pro-inflammatory gene expressions by progenitor cell differentiation and proliferation factor in chicken DF-1 cells

  • Hwang, Eunmi;Kim, Hyungkuen;Truong, Anh Duc;Kim, Sung-Jo;Song, Ki-Duk
    • Journal of Animal Science and Technology
    • /
    • 제64권1호
    • /
    • pp.123-134
    • /
    • 2022
  • Toll-like receptors (TLRs), as a part of innate immunity, plays an important role in detecting pathogenic molecular patterns (PAMPs) which are structural components or product of pathogens and initiate host defense systems or innate immunity. Precise negative feedback regulations of TLR signaling are important in maintaining homeostasis to prevent tissue damage by uncontrolled inflammation during innate immune responses. In this study, we identified and characterized the function of the pancreatic progenitor cell differentiation and proliferation factor (PPDPF) as a negative regulator for TLR signal-mediated inflammation in chicken. Bioinformatics analysis showed that the structure of chicken PPDPF evolutionarily conserved amino acid sequences with domains, i.e., SH3 binding sites and CDC-like kinase 2 (CLK2) binding sites, suggesting that relevant signaling pathways might contribute to suppression of inflammation. Our results showed that stimulation with polyinosinic:polycytidylic acids (Poly [I:C]), a synthetic agonist for TLR3 signaling, increased the mRNA expression of PPDPF in chicken fibroblasts DF-1 but not in chicken macrophage-like cells HD11. In addition, the expression of pro-inflammatory genes stimulated by Poly(I:C) were reduced in DF-1 cells which overexpress PPDPF. Future studies warrant to reveal the molecular mechanisms responsible for the anti-inflammatory capacity of PPDPF in chicken as well as a potential target for controlling viral resistance.

Innate lymphoid cell markers: expression, localization, and regulation at the maternal-conceptus interface in pigs

  • Yugyeong Cheon;Inkyu Yoo;Soohyung Lee;Hakhyun Ka
    • Journal of Animal Reproduction and Biotechnology
    • /
    • 제38권3호
    • /
    • pp.89-98
    • /
    • 2023
  • Background: The regulation of maternal immunity is critical for the establishment and maintenance of successful pregnancy. Among many cell types regulating the immune system, innate lymphoid cells (ILCs) are known to play an important role in innate immunity. Although some reports show that ILCs are present at the maternalconceptus interface in humans and mice, the expression and function of ILCs in the endometrium have not been studied in pigs. Methods: Thus, we determined the expression, localization, and regulation of ILC markers, CD127 (a common marker for ILCs), BCL11B (a ILC2 marker), and RORC (a ILC3 marker) at the maternal-conceptus interface in pigs. Results: The expression of BCL11B and RORC, but not CD127, in the endometrium changed during pregnancy in a stage-specific manner and the expression of CD127, BCL11B, and RORC was greatest on Day 15 during pregnancy. CD127, BCL11B, and RORC were also expressed in conceptus tissues during early pregnancy and in chorioallantoic tissues during the later stage of pregnancy. BCL11B and RORC proteins were localized to specific cells in endometrial stroma. The expression of CD127 and BCL11B, but not RORC, was increased by the increasing doses of interferon-γ (IFNG) in endometrial explants. Conclusions: These results suggest that ILCs present at the maternal-conceptus interface may play a role in the establishment and maintenance of pregnancy by regulating the innate immunity in pigs.

Hippo Signal Transduction Mechanisms in T Cell Immunity

  • Antoine Bouchard;Mariko Witalis;Jinsam Chang;Vincent Panneton;Joanna Li;Yasser Bouklouch;Woong-Kyung Suh
    • IMMUNE NETWORK
    • /
    • 제20권5호
    • /
    • pp.36.1-36.13
    • /
    • 2020
  • Hippo signaling pathways are evolutionarily conserved signal transduction mechanisms mainly involved in organ size control, tissue regeneration, and tumor suppression. However, in mammals, the primary role of Hippo signaling seems to be regulation of immunity. As such, humans with null mutations in STK4 (mammalian homologue of Drosophila Hippo; also known as MST1) suffer from recurrent infections and autoimmune symptoms. Although dysregulated T cell homeostasis and functions have been identified in MST1-deficient human patients and mouse models, detailed cellular and molecular bases of the immune dysfunction remain to be elucidated. Although the canonical Hippo signaling pathway involves transcriptional co-activator Yes-associated protein (YAP) or transcriptional coactivator with PDZ motif (TAZ), the major Hippo downstream signaling pathways in T cells are YAP/TAZ-independent and they widely differ between T cell subsets. Here we will review Hippo signaling mechanisms in T cell immunity and describe their implications for immune defects found in MST1-deficient patients and animals. Further, we propose that mutual inhibition of Mst and Akt kinases and their opposing roles on the stability and function of forkhead box O and β-catenin may explain various immune defects discovered in mutant mice lacking Hippo signaling components. Understanding these diverse Hippo signaling pathways and their interplay with other evolutionarily-conserved signaling components in T cells may uncover molecular targets relevant to vaccination, autoimmune diseases, and cancer immunotherapies.

The Research of Immunological Function in Liver (간의 면역학적 역할에 대한 고찰)

  • 손창규
    • The Journal of Korean Medicine
    • /
    • 제22권1호
    • /
    • pp.3-9
    • /
    • 2001
  • In the view of oriental medicine, the liver is the general of the army in its function of protecting against the enemy. So this concept is very closely associated to the immunological function. Its relations with immunological function are as follows. 1. The liver produces most of the proteins and converts them with hepatocytes, composes 80% in total reticuloendothelial system with Kuffer cells & endothelial cells and has typical structure of sinusoidal vessels closely related with the blood system. 2. The liver plays an important role in innate immunity with Kuffer cells as well as with the molecules that the liver produces, related to complementary systems. 3. In the embryonic period, the liver is associated with immune associated cell growth and their maturation. After birth, it is associated with removing old red blood cells and with systematically modulating immune system through hormone metabolism. 4. The liver controls the autoimmune disease resulting from immune complex by removing molecules like immune complex. 5. In the processing of blood 19A from the digestive system, the liver has an important role in protecting the body from unnecessary immune responses. 6. In the oriental medical view, liver plays a major role in the immune function by storing blood and dispersing stagnated hepatoqi with the help of the kidneys and spleen.

  • PDF

Reevaluation of the Metabolic Essentiality of the Vitamins - Review -

  • McDowell, L.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권1호
    • /
    • pp.115-125
    • /
    • 2000
  • In recent years a great deal of information has accumulated for livestock on vitamin. function, metabolism and supplemental needs. The role of the antioxidant "vitamins" (carotenoids, vitamin E and vitamin C) in immunity and health of livestock has been a fruitful area of research. These nutrients play important roles in animal health by inactivating harmful free radicals produced through normal cellular activity and from various stressors. Both in vitro and in vivo studies showed that these antioxidant vitamins generally enhance different aspects of cellular and noncellular immunity. A compromised immune system will result in reduced animal production efficiency through increased susceptibility to diseases, thereby leading to increased animal morbidity and mortality. Vitamin E has been shown to increase performance of feedlot cattle and to increase immune response for ruminant health, including being beneficial for mastitis control. Vitamin E given to finishing cattle at higher than National Research Council (NRC) requirements dramatically maintained the red color (oxymyoglobin) compared with the oxidized metmyoglobin of beef. Under commercial livestock and poultry production conditions, vitamin allowances higher than NRC requirements may be needed to allow optimum performance. Generally, the optimum vitamin supplementation level is the quantity that achieves the best growth rate, feed utilization, health (including immune competency), and provides adequate body reserves.

Overexpression of rice premnaspirodiene oxygenase reduces the infection rate of Xanthomonas oryzae pv. oryzae

  • Nino, Marjohn C.;Song, Jae-Young;Nogoy, Franz Marielle;Kim, Me-Sun;Jung, Yu Jin;Kang, Kwon-Kyoo;Nou, Illsup;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • 제43권4호
    • /
    • pp.422-431
    • /
    • 2016
  • Plants utilize cytochrome P450, a large superfamily of heme-containing mono-oxygenases, in the synthesis of lignins, UV protectants, pigments, defense compounds, fatty acids, hormones, and signaling molecules. Despite the overwhelming assortment of rice P450 accession numbers in the database, their functional studies are lacking. So far, there is no evidence involving rice P450 in disease immunity. Most of our understanding has been based on other plant systems that are mostly dicot. In this study, we isolated the cytochrome P450 (OsCYP71) in rice, and screened the gene using gain-of-function technique. The full-length cDNA of OsCYP71 was constitutively overexpressed using the 35S promoter. We then explored the functions of OsCYP71 in the rice - Xanthomonas oryzae pv. oryzae pathosystem. Using the gene expression assays, we demonstrate the interesting correlation of PR gene activation and the magnitude of resistance in P450-mediated immunity.

Oomycetes RXLR Effectors Function as Both Activator and Suppressor of Plant Immunity

  • Oh, Sang-Keun;Kamoun, Sophien;Choi, Doil
    • The Plant Pathology Journal
    • /
    • 제26권3호
    • /
    • pp.209-215
    • /
    • 2010
  • Plant pathogenic oomycetes, such as Phytophthora spp., are the causal agent of the most devastating plant diseases. During infection, these pathogens accomplish parasitic colonization of plants by modulating host defenses through an array of disease effector proteins. These effectors are classified in two classes based on their target sites in the host plant. Apoplastic effectors are secreted into the plant extracellular space, and cytoplasmic effectors are translocated inside the plant cell, through the haustoria that enter inside living host cell. Recent characterization of some oomycete Avr genes showed that they encode effector protein with general modular structure including N-terminal conserved RXLR-DEER motif. More detailed evidences suggest that these AVR effectors are secreted by the pathogenic oomycetes and then translocated into the host plant cell during infection. Recent findings indicated that one of the P. infestans effector, Avrblb2, specifically induces hypersensitive response (HR) in the presence of Solanum bulbocastanum late blight resistance genes Rpi-blb2. On the other hand, another secreted RXLR protein PexRD8 originated from P. infestans suppressed the HCD triggered by the elicitin INF1. In this review, we described recent progress in characterized RXLR effectors in Phytophthora spp. and their dual functions as modulators of host plant immunity.

Influence of Ligustrum lucidum and Schisandra chinensis Fruits on Antioxidative Metabolism and Immunological Parameters of Layer Chicks

  • Ma, Deying;Liu, Yuqin;Liu, Shengwang;Li, Qundao;Shan, Anshan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권9호
    • /
    • pp.1438-1443
    • /
    • 2007
  • The experiment was conducted to evaluate the effects of Ligustrum lucidum (LL) and Schisandra chinensis (SC) on the growth, antioxidative metabolism and immunity of laying strain male chicks. The results showed that diets supplemented with 1% of either LL or SC had no effects on the growth performance of chicks compared with the control. Furthermore, both LL and SC significantly reduced malondialdehyde (MDA) concentration of serum and heart of chicks (p<0.05). In addition, superoxide dismutase (SOD) activity of serum of the birds was significantly elevated by supplementation with SC (p<0.05). Glutathione reductase (GR) activity of heart and serum of the birds was significantly elevated by supplementation with LL or SC (p<0.05). LL supplementation significantly elevated antibody values against Newcastle Disease virus (NDV)(p<0.05) and lymphoblastogenesis (p<0.05) of the birds. The results suggest that diets supplemented with 1% of either LL or SC may improve immune function and antioxidant status of chicks.

A Study on the Physiological Activity and Industrial Prospects of Plant-origin Lactic Acid Bacteria (식물 유산균의 생리활성작용과 시장현황 및 전망)

  • Cho, Young-Hoon;Park, Seok-Nam;Jeong, Seung-Hwan
    • Journal of Dairy Science and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.53-57
    • /
    • 2009
  • Lactic acid bacteria (LAB) Play an important role in the human diet and are used in the production of edible fermented products such as kimchi and yoghurt. LAB are regarded as safe food additives used to enhance the nutritive value of foods. Plant-origin lactic acid bacteria (PLAB) cultured in vegetal media are now widely used in food industries. PLAB have been found to activate intestinal immunity, modulate the balance of the intestinal bacterial from, and enhance intestinal function. They are known for their strong resistance to acid; this enables them to persist for a longer duration in the human intestine. PLAB can also survive in the intestinal environment under conditions of poor nutrition. They have stronger vitality as compared to LAB of animal origin. Due to the unique characteristics of PLAB, they are being widely used in Japan for processing foods such as yoghurt and beverages. Recently, PLAB has also been used as the culture for processing yoghurt in Korea. We expect further research on the functional effects of PLAB.

  • PDF

Fermented antler extract enhances the viability and interleukin-12 production of spleen cells (발효녹용 추출물에 의한 비장세포의 생존율 및 interleukin-12 생산 증진)

  • Yang, Hye-Yeoul;Kim, Youngsu;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • 제56권3호
    • /
    • pp.183-187
    • /
    • 2016
  • The effects of antlers have long been known in traditional Asian medicine. However, few studies have investigated the effects of antlers on immunity. In this study, we investigated whether fermented antler extract (FAE) has immunomodulatory effects on spleen cells. FAE enhanced the activity of spleen cells in a concentration dependent manner compared to antler extract. Interestingly, FAE significantly increased the production of interleukin-12, a representative cytokine of cell-mediated immunity, while it marginally increased that of tumor necrosis factor-alpha. Flow cytometry analysis demonstrated that FAE can protect spleen cells from spontaneous cell death without a significant proportional change in subsets, mainly lymphocytes. Taken together, the results of the present study showed that FAE has beneficial effects on spleen cells, a major type of immune cell, indicating that it can function as an immunomodulator without significant cytotoxicity. These data may broaden the use of FAE in basic research and clinical areas.