• Title/Summary/Keyword: Immune stimulating effect

Search Result 81, Processing Time 0.041 seconds

Anticomplementary Activity and Immune-Stimulating Effect of the Extracts from Barley (Hordeum Vulgare) (보리(Hordeum vulgare)추출물의 항보체 및 면역증강 효과)

  • 김유영;구성자
    • Korean journal of food and cookery science
    • /
    • v.13 no.5
    • /
    • pp.661-668
    • /
    • 1997
  • By using several solvents, barley extracts containing the anticomplementary activities in classical pathway were prepared (250 $\mu\textrm{g}$/ml): methanol (83.1%), ethanol (71.9%), water extract (25.4%), M-1 (250 $\mu\textrm{g}$/ml), and the soluble part of methanol extract which showed the highest activity (83.4%) and the yield. Anticomplementary activity of methanol extract as well as protease digestion in classical pathway showed 82.4% and 78.4% in the concentration of 250 $\mu\textrm{g}$/ml, respectively. It was found that protein was not involved in anticomplementary activity in the classical pathway and the methanol extract made an impact on classical pathway, but not on alternative pathway. For the immune-stimulating effect, the T cell proliferation effect of the protease digestion displayed little effect irrespective of the dose. In addition, the T cell proliferation effect of methanol extract showed 13-fold higher proliferation effect compared with positive control. It was revealed that the substance containing protein serves as an important factor for the immune proliferation. Therefore, the anticomplementary activity ${\beta}$-glucan in classical pathway and alternative pathway displayed the lowest activity, showing 2.2%, 22.3% respectively. However, the immune-stimulating effect of ${\beta}$-glucan showed the T cell stimulating effect 13 times higher than positive control.

  • PDF

Immune-stimulating Effect of Lactobacillus plantarum Ln1 Isolated from the Traditional Korean Fermented Food, Kimchi

  • Jang, Hye Ji;Yu, Hyung-Seok;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.926-929
    • /
    • 2020
  • This study aimed to determine the immune-stimulating effects of heat-killed Lactobacillus plantarum Ln1 (HK-Ln1) through the production of nitric oxide (NO) and pro-inflammatory cytokine achieved by inducing NF-κB and mitogen-activated protein kinase (MAPK)-signaling pathways in macrophages. HK-Ln1 showed higher NO and cytokine production compared to control (nonstimulated lipopolysaccharide); in addition, the expression of inducible nitric oxide synthase (iNOS) was induced through HK-Ln1treatment. The phosphorylation of IκB-α and p65 increased following treatment by HK-Ln1, which implicates IκB-α degradation and the translocation of p65 to nucleus. In addition, the phosphorylation of MAPKs, ERK 1/2, JNK, and p38 was induced following HK-Ln1 treatment.

Effect of Olive Flounder, Paralichthys olivaceus, Immune Genes Stimulation by Molecular Adjuvant in Vitro Culture Condition (In vitro 조건에 따른 molecular adjuvant의 넙치, Paralichthys olivaceus 면역유전자 자극 효과)

  • KWON, Mun-Gyeong;Hwang, Jee-Youn;SEO, Jung-Soo;JUNG, Sung-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1470-1478
    • /
    • 2015
  • Adjuvant is an immune enhancer commonly used during vaccination to enhance the host immune response. In the present study, we produced the several recombinant protein from immune related gene of olive flounder (Paralichthys olivaceus). Especially, to produce the soluble type of recombinant protein, we constructed the MBP (Maltose binding protein) fusion G-CSF (Granulocyte colony stimulating factor) recombinant protein among the flounder immune related genes. To verify the immune stimulatory effect and safety of this recombinant protein (rPoGCSF), expression changes of several immune genes were tested using quantitative real-time PCR method with gene specific primer from flounder head kidney leukocytes. As a result, we confirmed that the rPoGCSF has an ability of immune stimulatory effect, also it has broad range of pH and temperature.

Glycoproteins Contained within Soamsan, a Traditional Oriental Medicine, are the Main Class of Active Ingredients Responsible for the Medicine-induced Immune Stimulation

  • Lee, Jeong-Chae;Lee, Kyung-Yeol;Jung, Ha-Na;Kim, Jae-Gon;Jang, Yong-Suk
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.253-257
    • /
    • 2005
  • In our previous study, Soamsan, a traditional Oriental medicine, was shown to enhance the induction of antigen-specific immune responses, and it was speculated that the enhancing activity might be closely associated with glycoproteins contained within the medicine. To elucidate this speculation, protein samples from each component, used in the preparation of Soamsan, were obtained and their immune stimulating activities were tested with mouse splenocytes. All the samples markedly enhanced the lymphocyte proliferation and cytokine secretion by the mouse splenocytes. In particular, the enhancement was significantly higher with the protein sample treatments than with those of the original crude sample. Furthermore, the pronase E- and $NaIO_4$-mediated inhibition of splenocyte-stimulation activity of the protein samples clearly supported that glycoproteins are the main class of active ingredients responsible for the lymphocyte stimulating activity of the samples. Consequently, our findings suggest that glycoproteins might have a pivotal role in Soamsan-mediated immune modulation, although the in vivo effect of the glycoproteins should be further elucidated.

Antioxidant and Anti-hyperglycemic Activity of Polysaccharide Isolated from Dendrobium chrysotoxum Lindl

  • Zhao, Yaping;Son, Young-Ok;Kim, So-Soon;Jang, Yong-Suk;Lee, Jeong-Chae
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.670-677
    • /
    • 2007
  • Although polysaccharide is believed to play an important role in the medicinal effect of Dendrobium chrysotoxum Lindl (DCL), its role as an antioxidant and in anti-hyperglycemic induction was not reported. In this study, polysaccharide with molecular weight of approximately 150 kDa, herein named DCLP, was isolated from the stem of DCL, and its antioxidative, hypoglycemic and immune stimulating effects were evaluated using various in vitro and in vivo assay systems. DCLP inhibited hydroxyl radicals ($^{\cdot}$OH)-mediated deoxyribose degradation by scavenging hydroxyl radicals directly as well as by chelating iron ions. DCLP also showed dose-dependent scavenging activity on superoxide anions ($O_2^{{\cdot}-}$) and offered significant protection (p < 0.001) against glucose oxidase-mediated cytotoxicity in Jurkat cells. DCLP had immune stimulating effects, as evidenced by the DCLP-mediated increases in the level of DNA synthesis, viability, and cytokine secretion in mouse lymphocytes. Moreover, oral administration of DCLP produced a significant reduction in blood glucose level in alloxan-induced diabetic mice. These findings suggest that DCLP has a potential utility in treating patients who require enhanced antioxidation, immune function and/or hypoglycemic activity.

Enhancement of Immune Responses by a Water Soluble Proteoglycan, Lepidan from Lentinus lepideus (잣버섯 균사체로부터 분리한 수용성 단백다당체 Lepidan의 면역 증가 작용)

  • 진미림;정규선
    • YAKHAK HOEJI
    • /
    • v.43 no.5
    • /
    • pp.635-641
    • /
    • 1999
  • In this study, we investigated the immunopotent activities of lepidan, a water soluble proteoglycan from Lentinus lepideus. To examine whether lepidan may affect nonspecific immune responses, we determined the effect on the production of nitric oxide (NO). Lepidan effectively increased the NO production in IFN-${\gamma}$ and LPS triggered RAW 264.7 cells. To further demonstrate the evidence that lepidan activates various immune cells, we determined the alkaline phosphatase activity, plaque-forming cell number and secretion of interleukine-4 (IL-4) and granulocyte/macrophage-colony stimulating factor (GM-CSF) after lepidan treatment in murine splenocytes. The results showed that lepidan increased alkaline phosphatase activity and the number of plaque-forming cells, which indicates that lepidan can lead B lymphocytes to late stage of differentiation. Also, when the splenocytes were cultured with lepidan for 48 hr, the level of IL-4 and GM-CSF in the supernatant dramatically increased. Taken together, these data suggest that lepidan is a biological response modulator that is able to activate immune responses.

  • PDF

Effects of Opuntia ficus-indica extract on immune cell activation (손바닥선인장(제주도 기념물 35호) 추출물이 면역계세포의 활성화에 미치는 영향)

  • 문창종;김승준;안미정;이선주;정규식;박상준;윤도영;최용경;신태균
    • Journal of Life Science
    • /
    • v.10 no.4
    • /
    • pp.362-364
    • /
    • 2000
  • Opuntia ficus-indca(Op) extract has been claimed to have several therapeutic properties in oriental medicine including anti-inflammatory and anti-rheumatoid arthritis effects. Little is known of its effect on the activation of immune cells such as T cells and macrophages. To evaluate the functional effect of Op extract on immune cells, we examined whether Op extract stimulates the proliferation of T cells and the secretion of cytokines including IL-1 beta, IL-6 and tumor necrosis factor-alpha in THP-1 cell lines by RT-PCR. Op extract significantly enhanced the proliferation of T cell clone(D10S). Transcription of cytokines including IL-1 beta, IL-6, and TNF-alpha peaked 6 hrs after exposure to Op extract(100g/ml) in the THP-1 cell line and declined and declined thereafter. In an experiment to test the dose dependency of transcription of cytokines, transcription increased at a dose of 10 g/ml and the maximum expression was obtained at 100 g/ml, 6 hrs after exposure to Op extract. These findings suggest that Op extract is a potent stimulant of immune cells including T cells and macrophages, which acts by stimulating T cell proliferation and upregulating cytokines. These phenomena imply that some edible plants may be beneficial to living animals through the activation of immune functions.

  • PDF

Heat-Killed Lactobacillus brevis Enhances Phagocytic Activity and Generates Immune-Stimulatory Effects through Activating the TAK1 Pathway

  • Jeong, Minju;Kim, Jae Hwan;Lee, Ji Su;Kang, Shin Dal;Shim, Sangmin;Jung, Moon Young;Yang, Hee;Byun, Sanguine;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1395-1403
    • /
    • 2020
  • There is an increasing interest in using inactivated probiotics to modulate the host immune system and protect against pathogens. As the immunomodulatory function of heat-killed Lactobacillus brevis KCTC 12777BP (LBB) and its mechanism is unclear, we investigated the effect of LBB on immune response based on the hypothesis that LBB might exert stimulatory effects on immunity. In the current study, we demonstrate that administration of LBB can exert immune-stimulatory effects and promote clearance of foreign matters through enhancing phagocytosis. Treatment with LBB induced the production of TNF-α, IL-6, and nitric oxide in macrophages. Importantly, LBB directly increased the phagocytic activity of macrophages against bacterial particles. LBB was able to promote the production of TNF-α in bone marrow-derived macrophages and splenocytes and also increase the proliferation rate of splenocytes, suggesting that the immune-stimulating activity of LBB can be observed in primary immune cells. Investigation into the molecular mechanism responsible revealed that LBB upregulates TAK1 activity and its downstream ERK, p38, and JNK signaling pathways. To further confirm the immunomodulatory capability of LBB in vivo, we orally administered LBB to mice and assessed the effect on primary splenocytes. Splenocytes isolated from LBB-treated mice exhibited higher TNF-α expression and proliferative capacity. These results show that heat-killed L. brevis, a wildly consumed probiotic, may provide protection against pathogens through enhancing host immunity.

Comparative Study of Immune-Enhancing Activity of Crude and Mannoprotein-Free Yeast-Gluean Preparations

  • Kim, Hye-Nam;Lee, Jung-Nam;Kim, Gi-Eun;Ha-Lee, Young-Mie;Kim, Chan-Wha;Sohn, Jeong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.826-831
    • /
    • 1999
  • ${\beta}-Glucan$, one of the major cell wall components of Saccharomyces cerevisiae, is known to enhance the immune function, especially by activating macrophages. Accordingly, in an effort to develop a safe and efficient immune stimulatory agent, we prepared crude ${\beta}-glucan$ (glucan-p1) and partially purified ${\beta}-glucan$ that was free of mannoproteins (glucan-p2), and evaluated their effect on both the macrophage function and resistance to E. coli-induced peritonitis. To investigate the function of the macrophages, phagocytosis, $TNF-{\alpha}$ secretion, oxygen burst, and the expression of cytokine genes such as $IFN-{\gamma}$ and IL-12 were analyzed. Glucan-p2 markedly stimulated the macrophages with all these parameters. Glucan-p1, however, did not stimulate phagocytosis, yet it induced $TNF-{\alpha}$ secretion, oxygen burst, and the expression of $IFN-{\gamma}$ and IL-12, although less efficiently than glucan-p2. Finally, to test the in vivo protective effect of {\beta}-glucan against infection, the survival of mice from E. coli-induced peritonitis was investigated. After 24 h of the peritoneal challenge of E. coli, all of the mice treated with glucan-p2 survived whereas none survived in the control group. Glucan-p1 showed only a marginal effect in protecting the mice. These results suggest that mannoprotein-free gluean-p2, but not gluean-p1, can serve as an effective immune-stimulating agent.

  • PDF