• Title/Summary/Keyword: Immobilized cell

Search Result 320, Processing Time 0.023 seconds

CHARACTERISTICS OF A WATER-PURIFICATION SYSTEM USING IMMOBILIZED PHOTOSYNTHETIC BACTERIA BEADS

  • Kim, Joong-Kyun;Park, Kyoung-Joo;Cho, Kyoung-Sook;Nam, Soo-Wan;Kim, Yong-Ha
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.227-238
    • /
    • 2005
  • The characteristics of nitrogen removal by the free cell and the immobilized cell of R. capsulatus were investigated. Denitrification by R. capsulatus cells resulted in reduction of ORP with the rapid depletion of DO and the increase of pH. Without accumulation of nitrite, the removal efficiencies of ${NO_3}^-$-N for the free cell and the immobilized cell were 99.1 and 99.3%, respectively. During the three-month experiment of goldfish breeding equipped with a water-purification biofilter, the average values of pH and total cell numbers present in an aquarium were not significantly different between water-purification system and the control. The average concentrations of ${NH_4}^+$-N and ${PO_4}^{2-}$-P in water-purification system were relatively low, compared to that in the control. Goldfish died at $11^{th}$, $16^{th}$, $43^{rd}$, and $67^{th}$ days in the control, while goldfish died at $10^{th}$, $20^{th}$, and $39^{th}$ days in the water-purification system. On the days of goldfish's death, the total concentrations of nitrogenous compounds except for ${NO_2}^--N$ were higher than those on the other days of the experiment, especially with the concentrations of ${NH_4}^+$-N ranging from 7.4 to 13.5 mg/L. The water-purification system also showed the less turbidity of water with more active movement of goldfish than the control. PVA gel beads showed almost the full denitrifying ability even after the long-term experiment. As a result, the water-purification system was effective to remove nitrogenous compounds with better survival of goldfish.

Application of Oxygen Uptake Rate Measured by a Dynamic Method for Analysis of Related Fermentation Parameters in Cyclosporin A Fermentation:Suspended and Immobilized Cell Cultures

  • Chun, Gie-Taek;Agathos, S.N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1055-1060
    • /
    • 2001
  • Experimental data for the on-line estimation of cell concentration and growth rate are presented. For this purpose, we utilized the on-line calculation of the oxygen uptake rate (OUR), which was derived from a liquid phase dynamic mass balance for the oxygen during the active growth phase in cyclosporin A (CyA) fermentation. The cell yield coefficient, based on the oxygen $(Y_{x/o})$for both suspended and immobilized cells of Tolypocladium inflatum, was estimated as $1.9 gDCW/gO_2$ from a very good linear correlation between the cell mass produced and the total oxygen consumed. The calculated yield showed a good agreement with the value of $(Y_{x/o})$ generated from the correlation between the cell growth rate and the oxygen uptake rate. In addition, further experimental data are given, which were also applied to determine the specific oxygen uptake rate of T. inflatum cells during the exponential phase of CyA fermentation. A theoretical basis for the analysis of these fermentation parameters is also provided.

  • PDF

Production of Acrylamide Using Immobilized Cells of Rhodococcus rhodochrous M33

  • Kim, Bu-Youn;Hyun, Hyung-Hwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.4
    • /
    • pp.194-200
    • /
    • 2002
  • The cells of Rhodococcus rhodochrous M33, which produce a nitrile hydratase enzyme, were immobilized in acrylamide-based polymer gels. The optimum pH and temperature for the activity of nitrile hydratase in both the free and Immobilized cells were 7.4 and 45$\^{C}$, respectively, yet the optimum temperature for acrylamide production by the immobilized cells was 20$\^{C}$. The nitrile hydratase of the immobilized cells was more stable with acrylamide than that of the free cells. Under optimal conditions, the final acrylamide concentration reached about 400 g/L with a conversion yield of almost 100% after 8 h of reaction when using 150 g/L of immobilized cells corresponding to a 1.91 g-dry cell weight/L. The enzyme activity of the immobilized cells rapidly de-creased with repeated use. However, the quality of the acrylamide produced by the immobilized cells was much better than that produced by the free cells in terms of color, salt content, turbidity, and foam formation. The quality of the aqueous acrylamide solution obtained was found to be of commercial use without further purification.

Biodiesel Production: Utilization of Loofah Sponge to Immobilize Rhizopus chinensis CGMCC #3.0232 Cells as a Whole-Cell Biocatalyst

  • He, Qiyang;Xia, Qianjun;Wang, Yuejiao;Li, Xun;Zhang, Yu;Hu, Bo;Wang, Fei
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1278-1284
    • /
    • 2016
  • Rhizopus chinensis cells immobilized on loofah (Luffa cylindrica) sponges were used to produce biodiesel via the transesterification of soybean oil. In whole-cell immobilization, loofah sponge is considered to be a superior alternative to conventional biomass carriers because of its biodegradable and renewable properties. During cell cultivation, Rhizopus chinensis mycelia can spontaneously and firmly adhere to the surface of loofah sponge particles. The optimal conditions for processing 9.65 g soybean oil at 40℃ and 180 rpm using a 3:1 methanol-to-oil molar ratio were found to be 8% cell addition and 3-10% water content (depending on the oil's weight). Under optimal conditions, an over 90% methyl ester yield was achieved after the first reaction batch. The operational stability of immobilized Rhizopus chinensis cells was assayed utilizing a 1:1 methanol-to-oil molar ratio, thus resulting in a 16.5-fold increase in half-life when compared with immobilized cells of the widely studied Rhizopus oryzae. These results suggest that transesterification of vegetable oil using Rhizopus chinensis whole cells immobilized onto loofah sponge is an effective approach for biodiesel production.

Biodegradation of PAHs (Polycyclic Aromatic Hydrocarbon) Using Immobilized Cells of Phanerochaete chrysosporium (고정화 Phanerochaete chrysosporium을 이용한 다환 방향족 화합물의 분해)

  • 서윤수;류원률;김창준;장용근;조무환
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.247-253
    • /
    • 2000
  • This study was aimed to enhance polycyclic aromatic hydrocarbon(PAHS) biodegradation rate by repeated-batch treatment using immobilized cells of Phanerochaete chrysosporium. In the repeated-batch operations with 30 mg/L of pyrene the maximum degradation rate was 6.58 mg/L day. As the number of batches increased the concentration of immobilized cells significantly decreased and the degradation rate and specific acitivity gradually increased to a maximum value and then decreased. To have PAH degradation activity and cell mass recovered one batch of cultivation using the growth medium instead of the PAH-degrading medium was carried in the course of repeated-batch operations. This maximum degradation rates of pyrene and anthracene were 4.29 and 4.46 mg/L$.$day respectively. Overall the rate of PAH degradation could be enhanced 2.5-30 folds by using immobilized cells compared to the case of using suspended cells.

  • PDF

Continuous Deodorization of Malodorous Sulfur Compounds Using Immobilized Riohacillus neapolitanuts R-10 (고정화 Thiobacillus neapolitanus R-10를 이용한 유황계 악취물질의 연속제거)

  • 원용돈;박상보
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.295-301
    • /
    • 1995
  • Continuous deodorization of malodorous sulfur compounds by Thiobaillus neapolitanusts R-10 immobilized onto a polypropylene pellet was studied using a column reactor at 30$^{\circ}$C. The maximum amounts of immobilized cells was 5.3 gall polypropylene with 5$\times$7.5mm in pellet size, and the amounts of immobilized cells in the higher part of the column was as twice as in the lower part. The optimum pH and temperature for removal of dimethyl sulfide were 6.0 and 30$^{\circ}$C, respectively. When 5-20 ${mu}ell$/l of hydrogen sulfide and methylmercaptan were employed 98% of removal efficiency were achieved. In contrast, lower concentrations of dimethyl sulfide and dimethyldisulfide should be supplied to meet satisfactory deodorization efficiency. The immobilized cell column was successfully operated for the deodorization of mixture of sulfur compounds over 15 days without significant loss of initial activity achieving high efficiency.

  • PDF

Ethanol Production from Lactose by Immobilized Reactor System Using a Fusant Yeast Strain of Saccharomyces cerevisiae and Kluyveromyces fragilis

  • Lee, Chu-Hee;Bang, Jeong-Hee;Hyun, Nam-Doo
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.355-359
    • /
    • 1992
  • Yeast cells of a fusant strain constructed by protoplast fusion of Saccharomyces cerevisiae and Kluyveromyces frugilis were immobilized on calcium alginate beads. The increment of the ethanol tolerance of this strain to 8.0%, when compared with the parent K, fragilis, was confirmed. Based on the results from jar fermentation, a packed-bed reactor of theh immobilized yeast cells was operated. The optimal performance of the immobilized yeast reactor for ethanol production was achieved when supplying 10% lactose (suplemented 1.0% yeast extract) at a temperature of 30.deg.C. The maximal ethanol productivity was obtained as 13.3 g/I/hr at a dilution rate of $0.76 hr^{-1}$.

  • PDF

Bioconversion of progesterone by immobilized aspergillus phoenicis (고정화된 aspergillus phoenicis를 이용한 progesterone 전환)

  • 박희은;김말남
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.70-76
    • /
    • 1989
  • Progestrone bioconversion by immobilized Aspergillus phoenicis was studied. Progesterone was converted into 11$\alpha$-hydroxyprogesterone and 3-minor byproducts. Whole cells of A. phoenicis were immobillized by enreappment with calcium-alginate, K-carrageenan, or polyacrylamide. Of these materials tested, cell immobilized in $Ca^{2+}$ -alginate gels showed the highest activity for 11$\alpha$-hydroxylation of progesterone. In the case of mycelia immobilized in $Ca^{2+}$-alginate, futher progressing hydroxylation of 11$\alpha$-hydroxyprogesterone was greatly reduced. Spores of A. phoenicis which were immobillized with $Ca^{2+}$-alginate and germinatedin situ for 25 hours showed higher 11$\alpha$-hydroxylase activity than those of entrapped whole mycelia and maintained initial enzyme activity for all 8 times of repeated use. After 16 times of reuse, the activity was declined 30% or more. When culture media and $Zn^{2+}$ were introduced into the reaction media, the activity of the immobilized mycelia which had been lowered due to many times of reuse was effectively reactivated.

  • PDF

Production of Salicylic Acid from Naphthalene by Immobilized Pseudomonas sp. Strain NGK1

  • Shinde, Manohar;Kim, Chi-Kyung;Karegoudar, Timmanagouda-Baramanagouda
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.482-487
    • /
    • 1999
  • The Pseudomonas sp. strain NGK1 (NCIM 5120) was immobilized in calcium alginate, agar, and polyacrylamide gel matrices. The salicylic acid-producing capacity of freely suspended cells was compared with immobilized cells in batches with a shake culture and continuous culture system in a packed bed reactor. Freely suspended cells ($4\times10^{10}cfu/ml$) produced 12 mM of salicylic acid, whereas cells immobilized in calcium alginate ($1.8\times10^{11}$cfu/g beads), agar ($1.8\times10^{11}$cfu/g beads), and polyacrylamide ($1.6\times10^{11}$cfu/g beads) produced 15, 11, and 16mM of salicylic acid, respectively, from naphthalene at an initial concentration of 25 mM. The continuous production of salicylic acid from naphthalene was investigated in a continuous packed bed reactor with two different cell populations. The longevity of the salicylic acid-producing activity of the immobilized cells from naphthalene was also studied in semi continuous fermentations. The immobilized cells could be reused 18, 13, and more than 20 times without losing salicylic acid-producing activity in calcium alginate-,agar-, and polyacrylamide-entrapped cells, respectively. The study reveals a more efficient utilization of naphthalene and salicylic acid production by the immobilized Pseudomonas sp. strain NGK1 as compared to the free cells.

  • PDF

Comparative Bioreactor Studies in Terms of Oxygen Transfer between Suspended and Immobilized Fungal Systems for Cyclosporin A Fermentation (Cyclosporin A 생산을 위한 액체배양과 고정화배양의 생물반응기에서의 산소전달 비교 연구)

  • 전계택
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.211-223
    • /
    • 1994
  • In fermentations with a 4-liter stirred tank bioreactor, a better than two-fold enhancement of the gas-liquid mass transfer coefficient$(k_La)$ in the celite-immobilized fungal cultures of Tolypocladium in flatum over the parallel conventional free-cell was observed at identical biomass concentrations, despite the higher specific oxygen uptake rate of the immobilized fungi during exponential growth. As a result oxygen sufficient conditions, i. e., dissolve oxygen(D.O.) concentrations exceeding 75% air saturation, could be maintained throughout exponential growth period of the immobilized culture, in contrast to the suspended fungal culture, whose D.O. levels fell below 50% air saturation. A linear monotonic dependence of $k_La$ upon impeller agitaion rate was found for both immobilized and conventional cultivation modes over a range of 250 to 550rpm, the slope being a function of biomass concentration for the free but not for the immobilized cell system In contrasts oxygen transfer rate was a much weaker function of aeration rate up to about 2.5 vvm for both culture configurations. Above this level, aeration rate had no further effect on the mass transfer. In addition, the immobilized cultures sustained good morphological and physiological states, leading to almost two times higher cyclosporln A (CyA) productivity overt the parallel free cell system. These experiments suggest that the celite-immobilized fungal system in a stirred tank reactor has considerable promise for scaling up cyclosporin A production in terms of high-density cultivation.

  • PDF