• Title/Summary/Keyword: Imha Dam

Search Result 77, Processing Time 0.026 seconds

Development of a Decision Support System for Turbid Water Management through Joint Dam Operation

  • Kim, Jeong-Kon;Ko, Ick-Hwan;Yoo, Yang-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.31-39
    • /
    • 2007
  • In this study we developed a turbidity management system to support the operation for effective turbid water management. The decision-making system includes various models for prediction of turbid water inflow, effective reservoir operation using the selective withdrawal facility, analysis of turbid water discharge in the downstream. The system is supported by the intensive monitoring devices installed in the upstream rivers, reservoirs, and downstream rivers. SWAT and HSPF models were constructed to predict turbid water flows in the Imha and Andong catchments. CE-QUAL-W2 models were constructed for turbid water behavior prediction, and various analyses were conducted to examine the effects of the selective withdrawal operation for efficient high turbid water discharge, turbid water distribution under differing amount and locations of turbid water discharge. A 1-dimensional dynamic water quality model was built using Ko-Riv1 for simulation of turbidity propagation in the downstream of the reservoirs, and 2-dimensional models were developed to investigate the mixing phenomena of two waters discharged from the Andong and Imha reservoirs with different temperature and turbidity conditions during joint dam operation for reducing the impacts of turbid water.

  • PDF

Development of Turbid Water Prediction Model for the Imha Dam Watershed using HSPF (HSPF를 활용한 임하댐 유역의 탁수 예측모델 구축)

  • Yi, Hye-Suk;Kim, Jeong-Kon;Lee, Sang-Uk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.760-767
    • /
    • 2008
  • A watershed model was constructed using HSPF(Hydrological Simulation Program - Fortran) for predicting flow and suspended solid in the Imha dam watershed. The whole watershed was divided into 33 sub-watersheds in the watershed model, which was calibrated for flow using measured data from 2001 to 2007. The accuracy of watershed model prediction was evaluated using statistical coefficients of R$_{eff}$(Nash-Sutcliffe), R$^2$(Correlation coefficient) and graphical comparison. Then, the model was calibrated for suspended solid using field data measured during 3 major rainfall events in July 2006, and then validated against data obtained in 2 rainfall events from July to August in 2007. Overall, the model showed good agreements with the field measurements for flow and suspended solid. The watershed model constructed in this study can provide flow and suspended solid entering the Imha reservoir and will be utilized for turbid water management in linkage with reservoir water quality models.

Analysis of Korean TMLD Design Flow Variation due to Large Dam Effluents and Water Use Scenarios

  • Shin, Hyun-Suk;Kang, Doo-Kee;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.74-83
    • /
    • 2007
  • The goal of this study is to establish an integrated watershed hydrologic model for the whole Nakdong River basin whose area is an approximately 24,000 km2. Including a number of watershed elements such as rainfall, runoff, water use, and so on, the proposed model is based on SWAT model, and is used to improve the flow duration curve estimation of ungauged watersheds for Korean Total Maximum Daily Load (TMDL). The model is also used to recognize quantitatively the river flow variation due to water use elements and large dam effluents in the whole watershed. The established combined watershed hydrologic model, SWAT-Nakdong, is used to evaluate the quantified influences of artificial water balance elements, such as a dam and water use in the watershed. We apply two water balance scenarios in this study: the dam scenario considering effluent conditions of 4 large multi-purpose dams, Andong dam, Imha dam, Namgang dam, and Habcheon dam, and the water use scenario considering a water use for stream line and the effluent from a treatment plant. The two scenarios are used to investigate the impacts on TMDL design flow and flow duration of particular locations in Nakdong River main stream. The results from this study will provide the basic guideline for the natural flow restoration in Nakdong River.

  • PDF

Spatial Analysis of Nonpoint Source Pollutant Loading from the Imha dam Watershed using L-THIA (L-THIA를 이용한 낙동강수계 임하댐유역 비점오염원의 공간적 분포해석)

  • Jeon, Ji-Hong;Cha, Daniel K.;Choi, Donghyuk;Kim, Tae-Dong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.17-29
    • /
    • 2013
  • Long-Term Hydrologic Impact Assessment (L-THIA) model which is a distributed watershed model was applied to analyze the spatial distribution of surface runoff and nonpoint source pollutant loading from Imha watershed during 2001~2010. L-THIA CN Calibration Tool linked with SCE-UA was developed to calibrate surface runoff automatically. Calibration (2001~2005) and validation (2006~2010) of monthly surface runoff were represented as 'very good' model performance showing 0.91 for calibration and 0.89 for validation as Nash-Sutcliffe (NS) values. Average annual surface runoff from Imha watershed was 218.4 mm and Banbyun subwatershed was much more than other watersheds due to poor hydrologic condition. Average annual nonpoint source pollutant loading from Imha wateshed were 2,295 ton/year for $BOD_5$, 14,752 ton/year for SS, 358 ton/year for T-N, and 79 ton/year for T-P. Amount of pollutant loading and pollutant loading rates from Banbyun watershed were much higher than other watersheds. As results of analysis of loading rate from grid size ($30m{\times}30m$), most of high 10 % of loading rate were generated from upland. Therefore, major hot spot area to manage nonpoint source pollution in Imha watershed is the combination of upland and Banbyun subwatershed. L-THIA model is easy to use and prepare input file and useful tool to manage nonpoint source pollution at screening level.

Development of an evaluation index based on supply capacity for practical evaluation of drought resilience (현실적 가뭄대응력 평가를 위한 공급가능일수 기반의 평가지표 개발)

  • Kim, Gi Joo;Kim, Jiheun;Seo, Seung Beom;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.11-21
    • /
    • 2023
  • This study suggests the drought resilience index as S-day as a means of preparing for the recent extreme drought, allowing for the actual operational identification of each drought countermeasure's priority as well as the vulnerability of water resource facilities to drought. Although each dam's drought measures are unique in this case, the representative examples include adjusting the water supply, linking the functioning of various facilities, and considering emergency capacity. Here, 15 multipurpose dams and water supply dams in Korea were inspected. Under the return period of 20-year drought, most of dams showed stable by adjusting the water supply overall. The measures, however, did not seem to be able to resist a multi-year drought lasting more than two years. Besides, Hoengseong and Anodong-Imha Dam only lasted a year under the 100-year drought return period with other measures. Without the deployment of drought mitigation strategies, it is expected that the Hoengseong Dam, Andong-Imha Dam, Gunwi Dam, Unmun Dam, Daecheong Dam, and Juam Dam would not be able to meet the all water demand for a year under the 20-year drought condition. The ideal capacity for each drought measure was then suggested. Additionally, by increasing or decreasing the current supply contract by 10% in order to account for demand changes resulting from socio-economic instability, the drought response capacity of all 15 dams was re-evaluated. By lowering the supply contract amount by 10%, it was possible to endure a severe drought.

Stochastic Continuous Storage Function Model with Ensemble Kalman Filtering (II) : Application and Verification (앙상블 칼만필터를 연계한 추계학적 연속형 저류함수모형 (II) : - 적용 및 검증 -)

  • Lee, Byong-Ju;Bae, Deg-Hyo;Shamir, Eylon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.963-972
    • /
    • 2009
  • The objective of this study is to evaluate an application of stochastic continuous storage function model with ensemble Kalman filter technique. The case study is performed at the upstream basin of Jibo streamflow gauge including Andong and Imha dam. Test period is for the rainy season during 2006 and 2007. Long term runoff analysis is feasible in the case of using deterministic model. Ensemble members for input data and parameters are generated using Monte Carlo simulation for the purpose of applying ensemble Kalman filter technique. The cumulative absolute errors of stochastic model to the deterministic one are improved for the amount of 17.5 %, 18.3 % and more than 40.0 % for Andong dam, Imha dam and Jibo station, respectively. The results indicate that the stochastic model improves the accuracy of the simulated discharge considerably.

The optimal operation of reservoir systems during flood season (홍수기 저수지의 최적연계운영)

  • Han, Kun-Yeun;Choi, Hyun-Gu;Kim, Dong-Il;Lee, Kyeong-Teak
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.743-746
    • /
    • 2008
  • Recently, due to the effect of global warming and extreme rainfall, the magnitude of flood disaster and the frequency of flood is rapidly increasing. In order to mitigate the damage of human and property from this kind of meteorological phenomenon and manage water resources scientifically, effective operation of dam and reservoir is very important. In case of Andong dam which was not performed a flood control function needs to develop new types of dam safety management measure because of recent extraordinary flood by typhoons. In case of Andong dam and Imha dam, I am using HEC-5 model in order to apply reservoir simulation. In this case, complex conditions among 100-year floods , 200-year floods and PMF was used. Also, I modified the maximum outflow 3,800m3/s into 3,490m3/s and applied this modified discharge in order to secure freeboard in the downstream. In an analysis that I applied modified outflow by 100-year floods and 200-year floods to, the result showed that river didn't overflow in Andong area but some other places have relatively low freeboard. In the cases that I modified maximum outflow, results showed that freeboard of levee is larger than existed simulation. In the simulation that I applied 200-year floods and PMF to and under a condition connected with PMF, results showed overflowing the levees. Because of the difference between the frequency of dam outflow and the design flood in river, it is required to improve the existed flood plan in the downstream of Andong dam. As a result of this study, the optimal operation of reservoir systems can be proposed to mitigate the flood damage in the downstream of Andong dam and also can be used to establish the flood plans.

  • PDF

Parallel Reservoir Analysis of Drought Period by Water Supply Allocation Method (공급량 배분기법을 이용한 갈수기 병렬저수지 해석)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.261-269
    • /
    • 2006
  • In this study, an optimization technique was developed from the application of allocation rule. The results obtained from the water supply analysis and reliability indices analysis of Andong dam and Imha dam which are consist of parallel reservoir system are summarized as the followings; Allocation rule(C) is effective technique at the parallel reservoir system because results of the water supply analysis, storage analysis and reliability indices analysis is calculated reasonable results. Also, reliability indices analysis results are not sufficient occurrence based reliability or quantity based reliability. Thus reliability indices analysis are need as occurrence based reliability, quantity based reliability vulnerability, resilience, average water supply deficits and average storage. And water supply condition is better varying water supply condition than constant water supply condition.