• 제목/요약/키워드: Imaging plate

검색결과 231건 처리시간 0.026초

Quality Assurance System for Determination of Center Position in X-ray and Proton Irradiation Fields using a Stainless Ball and Imaging Plates in Proton Therapy at PMRC

  • Yasuoka, Kiyoshi;Ishikawa, Satoko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.189-191
    • /
    • 2002
  • In the proton therapy using a gantry system, periodical verification of iso-center position is very important to assure precision of patient positioning system at any gantry angles in proton treatment. In the gantry system, there are three different types of iso-center; 1) in a geometrical view, 2) in an X-ray beam's eye view, 3) in a proton beam's eye view. Idealistically, they would be an identical point. They could, however, be different points. It may be a source of errors in patient positioning. At PMRC, we have established a system of verification for iso-center positions using a stainless ball of 2-cm in diameter and an imaging plate. This system provides the relation among a center of a patient target position, a center of proton irradiation field, and/or a center of X-ray field in accuracy of 50$\square$m in the 2) and 3) views, as images of a center of the stainless ball and a center of a 100 mm${\times}$100 mm-aperture brass collimator recorded on the imaging plate, which is setup at 1-cm behind the ball. In addition, it provides simultaneously the images of the ball and the collimator on an imaging intensifier (II), which is setup downstream of the proton or X-ray beam. We present a method of quality assurance (QA) for calibration of iso-center position in a rotation gantry system at PMRC and the performance of this system. A proton beam position on the 1$\^$st/ scatterer in the nozzle of the gantry affects less sensitive (reduced by a factor of 1/5) to the results of the iso-center position. The effect is systematically correctable. The effect of the nozzle (or the collimator) position is less than 0.5 mm at the maximum extraction (390 mm).

  • PDF

Changes of the growth plate in children: 3-dimensional magnetic resonance imaging analysis

  • Yun, Hyung Ho;Kim, Hyun-Jung;Jeong, Min-Sun;Choi, Yun-Sun;Seo, Ji-Young
    • Clinical and Experimental Pediatrics
    • /
    • 제61권7호
    • /
    • pp.226-230
    • /
    • 2018
  • Purpose: This pilot study assessed changes in the growth plate and growth rates in children during a 6-month period. Methods: The study included 31 healthy children (17 boys, 14 girls) under evaluation for growth retardation. Height, weight, bone age, insulin like growth factor-1 (IGF-1), and insulin like growth factor binding protein 3 (IGF-BP3) were measured at baseline and after 6 months. In addition, the diameter, thickness, and volume of the femoral and tibial growth plates were measured using magnetic resonance imaging. Results: The mean bone age in boys and girls was 11.7 and 10.7 years, respectively. In boys, height (z score) (-0.2 vs. 0.0), weight (z score) (0.8 vs. 1.1), body mass index (BMI) (z score) (1.27 vs. 1.5), IGF-1 (ng/mL) (343.6 vs. 501.8), and IGF-BP3 (ng/mL) (5,088.5 vs. 5,620.0) were significantly higher after 6 months. In girls, height (z score) (-1.0 vs. -0.7), weight (z score) (-0.5 vs. 0.1), BMI (z score) (-0.02 vs. 0.3), IGF-1 (ng/mL) (329.3 vs. 524.6), and IGF-BP3 (ng/mL) (4,644.4 vs. 5,593.6) were also significantly higher after 6 months. In both sexes, the mean diameter and volume of the femoral and tibial growth plates were significantly increased 6 months later. Conclusion: No significant correlation was found between changes in the growth plate and clinical parameters in children with growth retardation in this study, other than correlations of change in femoral diameter with weight and BMI. A larger, long-term study is needed to precisely evaluate the correlation between change in the growth plate and growth.

Evaluation of a Curtain-Type Radiation Protection Device for Veterinary Interventional Procedures

  • Minsik Choi;Jaepung Han;Changgyu Lim;Jiwoon Park;Sojin Kim;Uhjin Kim;Jinhwa Chang;Dongwoo Chang;Namsoon Lee
    • Journal of Veterinary Clinics
    • /
    • 제41권3호
    • /
    • pp.157-164
    • /
    • 2024
  • The standard radiation protection method in the angiography suite involves the use of a thyroid shield, a lead apron, and lead glasses. However, exposure to substantial amounts of ionizing radiation can cause cataracts, tumors, and skin erythema. A newly developed curtain-type radiation protection device consists of a curtain drape composed of a five-layer bismuth and lead acrylic head-shielding plate, with both bearing an equivalent 0.25 mm lead thickness. In this study, a quality assurance phantom was used as the patient to create radiation scatter from the radiographic source, and an anthropomorphic mannequin phantom was used as the interventionalist to measure the radiation dose at seven different anatomical locations. Thermoluminescent dosimeters were used to measure the radiation dose. The experimental groups consisted of all-sided or one-sided curtain set-ups, the presence or absence of a conventional shielding system, and the orientation of beam irradiation. Consequently, the curtain-type radiation protection device exhibited better radiation protection range and capabilities than conventional radiation protection systems, especially in safeguarding the forehead, eyes, arms, and feet, with minimal radiation exposure. Moreover, the mean shielding ratios of the conventional shielding system and curtain-type radiation protection device were measured at 51.94% and 93.86%, respectively. Additionally, no significant decrease in the radiation protection range or capability was observed, even with changes in the beam orientation or one-sided protection. Compared with a conventional shielding system, the curtain-type radiation protection device decreased radiation exposure doses and improved comfort. Therefore, it is a potential new radiation protection device for veterinary interventional procedures.

Development of the Measurement Method of Extremely Low Level Activity with Imaging Plate (Imaging Plate를 이용한 극저준위 방사능 측정에 관한 연구)

  • Kwak, Ji-Yeon;Lee, K.B.;Lee, Jong-Man;Park, Tae-Soon;Oh, Pil-Jae;Lee, Min-Kie;Seo, Ji-Suk;Hwang, Han-Yull
    • Journal of Radiation Protection and Research
    • /
    • 제29권4호
    • /
    • pp.231-236
    • /
    • 2004
  • An imaging plate(IP) detector, a two-dimensional digital radiation detector that can acquire image of radioactivity distribution in a sample, has been applied in many fields; for industrial radiography, medical diagnosis, X-ray diffraction test, etc. In this study, the possibility of IP detector to be used lot measuring radioactivity of sample is explored using its high sensitivity, higher spatial resolution, wider dynamic range and screen uniformity for several kinds radiations. First, the IP detector is applied to measure the surface uniformity for area source. Surface uniformity is measured rapidly and nondestructively by measuring the radioactivity distribution of common standard area source$(^{241}Am)$. Next, the IP is employed to study the possibility of measuring an extremely low-level activity of environmental sample. For this study the screen uniformity, shield effect of background radiation, linear dynamic range and fading effect of the IP detector is investigated. The potato, banana, radish and carrot samples are chosen to measure ultra low-level activity of $^{40}K$ isotope. The efficiency calibration of IP detector is carried out using the standard source.

Design and Lithographic Fabrication of Elliptical Zone Plate Array with High Fill Factor

  • Anh, Nguyen Nu Hoang;Rhee, Hyug-Gyo;Ghim, Young-Sik
    • Current Optics and Photonics
    • /
    • 제5권1호
    • /
    • pp.8-15
    • /
    • 2021
  • An elliptical zone plate (EZP) array is important in off-axis optical systems because it provides two advantages. First, the residual beam and the main source are not focused in the same direction and second, the light from the observation plane is not reflected back towards the beam source. However, the fill factor of the previous EZP array was about 76% which was a little low. Hence, this EZP array could not collect the maximum amount of illumination light, which affected the overall optical performance of the lens array. In this study, we propose a new EZP array design with a 97.5% fill factor used in off-axis imaging system for enhancement of brightness and contrast. Then, direct laser lithography was used to fabricate the high fill factor EZP array by moving the XY linear stage of the system in a zigzag motion. The imaging properties of the proposed EZP array were experimentally verified at the focal plane and compared with the previous model.

Restoration of Chest X-ray by Kalman Filter

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • 제8권5호
    • /
    • pp.581-585
    • /
    • 2010
  • A grid was sandwiched between two cascaded imaging plates. Using a fan-beam X-ray tube and a single exposure scheme, the two imaging plates, respectively, recorded grid-less and grid type information of the object. Referring to the mathematical model of the Grid-less and grid technique, it was explained that the collected components whereas that of imaging plates with grid was of high together with large scattered components whereas that of imaging plate with grid was of low and suppressed scattered components. Based on this assumption and using a Gaussian convolution kernel representing the effect of scattering, the related data of the imaging plates were simulated by computer. These observed data were then employed in the developed post-processing estimation and restoration (kalman-filter) algorithms and accordingly, the quality of the resultant image was effectively improved.

Guided Wave Tomographic Imaging Using Boundary Element Method (경계요소법을 이용한 유도초음파 토모그래피 영상화 기법)

  • Piao, Yunri;Cho, Youn-Ho;Jin, Lianji;Ahn, Bong-Young;Kim, Noh-Yu;Cho, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제29권4호
    • /
    • pp.338-343
    • /
    • 2009
  • Tomography is the imaging method of cross sectional area using multi beam signals and is mainly applied to the medical diagnosis to acquire the image of the inside human body. This method is pretty meaningful in nondestructive evaluation field since the imaging of the inspection region can enhance the comprehension of the inspector. Recently, much attention has been paid to the guided wave for the diagnosis of platelike structures. So, in this work, a study on the imaging of the damage location in a plate was carried out on the basis of computer aided analysis of guided waves and tomographic imaging. To this end, boundary element method was employed to analyze the effect of the damage in plate on the propagation of the guided waves and the analytic results were applied to the tomographic imaging method to identify the damage location. Consequently, it was shown that the number of sensors heavily affect the inspection performance of the damage location.