• Title/Summary/Keyword: Imaging Module

Search Result 130, Processing Time 0.024 seconds

Study on the Thermal Buffer Mass and Phase Change Material for Thermal Control of the Periodically Working Satellite Component (주기적으로 작동하는 위성부품 열제어용 열적완충질량과 이를 대체할 상변화물질을 이용한 열제어부품의 비교연구)

  • Kim, Taig Young;Seo, Jung Gi;Hyun, Bum-Seok;Cheon, Hyeong Yul;Lee, Jang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1013-1019
    • /
    • 2014
  • Solid-liquid Phase Change Material(PCM) as a thermal control hardware for the electro-optical payload of low earth orbit satellite is numerically studied which can be substituted with Thermal Buffer Mass(TBM). The electro-optical module in LEO satellite is periodically work and high heat is dissipated during the imaging period, however, the design temperature range is very tight and sensitive. In order to handle this problem TBM is added and as a result the time constant of the module temperature increases. TBM is made of Al6010 and its mass directly affects the system design. To save the mass PCM is suggested in this study. The latent heat of melting or solidification is very high and small amount of PCM can play a role instead of TBM. The result shows that only 12% of TBM mass is enough to control the module temperature using PCM.

Development of Passive Millimeter-wave Security Screening System (수동 밀리미터파 보안 검색 시스템 개발)

  • Yoon, Jin-Seob;Jung, Kyung Kwon;Chae, Yeon-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.138-143
    • /
    • 2016
  • The designed and fabricated millimeter-wave security screening system receives radiation energy from an object and a human body. The imaging system consist of sixteen array antennas, sixteen four-stage LNAs, sixteen detectors, an infrared camera, a CCD camera, reflector, and a focusing lens. This system requires high sensitivity and wide bandwidth to detect the input thermal noise. The LNA module of the system has been measured to have 65.8 dB in average linear gain and 82 GHz~102 GHz in bandwidth to enhance the sensitivity for thermal noise, and to receive it over a wide bandwidth. The detector is used for direct current (DC) output translation of millimeter-wave signals with a zero bias Schottky diode. The lens and front-end of the millimeter-wave sensor are important in the system to detect the input thermal noise signal. The frequency range in the receiving sensitivity of the detectors was 350 to 400 mV/mW at 0 dBm (1 mW) input power. The developed W-band imaging system is effective for detecting and identifying concealed objects such as metal or plastic.

A low noise, wideband signal receiver for photoacoustic microscopy (광음향 현미경 영상을 위한 저잡음 광대역 수신 시스템)

  • Han, Wonkook;Moon, Ju-Young;Park, Sunghun;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.507-517
    • /
    • 2022
  • The PhotoAcoustic Microscopy (PAM) has been proved to be a useful tool for biological and medical applications due to its high spatial and contrast resolution. PAM is based on transmission of laser pulses and reception of PA signals. Since the strength of PA signals is generally low, not only are high-performance optical and acoustic modules required, but high-performance electronics for imaging are also particularly needed for high-quality PAM imaging. Most PAM systems are implemented with a combination of several pieces of equipment commercially available to receive, amplify, enhance, and digitize PA signals. To this end, PAM systems are inevitably bulky and not optimal because general purpose equipment is used. This paper reports a PA signal receiving system recently developed to attain the capability of improved Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) of PAM images; the main module of this system is a low noise, wideband signal receiver that consists of two low-noise amplifiers, two variable gain amplifiers, analog filters, an Analog to Digital Converter (ADC), and control logic. From phantom imaging experiments, it was found that the developed system can improve SNR by 6.7 dB and CNR by 3 dB, compared to a combination of several pieces of commercially available equipment.

An optimized radiosynthesis of 18F-THK-5351 for routine production on TRACERlab™ FXFN

  • Park, Jun Young;Son, Jeongmin;Yun, Mijin;Chun, Joong-Hyun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.91-97
    • /
    • 2017
  • $^{18}F-THK-5351$ is a PET radiotracer to image the hyperphosphorylated tau fibrillar aggregates in human brain. This protocol describes the optimized radiosynthesis of $^{18}F-THK-5351$ using a commercial GE $TRACERlab^{TM}$ $FX_{FN}$ radiosynthesis module. $^{18}F-THK-5351$ was prepared by nucleophilic [$^{18}F$]fluorination from its protected tosylate precursors, (S)-(2-(2-methylaminopyrid-5-yl)-6-[[2-(tetrahydro-2H-pyran-2-yloxy)-3-tosyloxy]propoxy] quinolone(THK-5352), at $110^{\circ}C$ for 10 min in dimethyl sulfoxide, followed by deprotection with 1 N HCl. The average radiochemical yield of $^{18}F-THK-5351$ was $31.9{\pm}6.7%$(decay-corrected, n = 10), with molar activity of $198.1{\pm}33.9GBq/{\mu}mol$($5.4{\pm}0.9Ci/{\mu}mol$, n = 10). The radiochemical purity was determined to be above 98%. The overall production time including HPLC purification is approximately 70 min. This fully-automated protocol is validated for clinical use.

Development of End-milling Inspection System Using 450kVp Tube Voltage (450kVp Tube Voltage를 이용한 엔드밀링 검색 시스템 개발)

  • Yoon, Moon-Chul;Jung, Jin-Seok;Hwang, In-Ho;Yuk, Sun-Woo;Park, Su-Kang;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.10-17
    • /
    • 2009
  • Transillumination system used by radiation is widely applied to industrial imaging system. In this study, the linear detector array constructed with scintillator and pin diode, and a multi-channel data acquisition system was developed for precision inspection of end-milling. The detector module consists of $16-CdWO_4$crystal scintillator and photodiode array. The detector and data acquisition system was applied to precision inspection of end-mill and the images of the end-mill were successfully reconstructed. The total system can analyze the Detector Quantum Efficiency(DQE) of each system. The performance of developed photodiodes equipment was compared with each other for different crystal geometry and its characteristics. Finally fine details of the end-mill phantom were constructed for industrial application. The image acquired contains several objects on a real time data transfer and the linear X-ray scanning system can be applied to many fields of a industry.

  • PDF

The Overview of CEU Development for a Payload

  • Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Park, Jong-Euk;Chang, Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.797-799
    • /
    • 2006
  • The Electro-optical camera subsystem as a payload of a satellite system consists of OM (optical module) and CEU(camera electronics unit), and most performances of the camera subsystem depend a lot on the CEU in which TDI CCDs(Time Delayed Integration Charge Coupled Device) take the main role of imaging by converting the light intensity into measurable voltage signal. Therefore it is required to specify and design the CEU very carefully at the early stage of development with overall specifications, design considerations, calibration definition, test methods for key performance parameters. This paper describes the overview of CEU development. It lists key requirement characteristics of CEU hardware and design considerations. It also describes what kinds of calibration are required for the CEU and defines the test and evaluation conditions in verifying requirement specifications of the CEU, which are used during acceptance test, considering the fact that CEU performance results change a lot depending on test and evaluation conditions such as operational line rate, TDI level, and light intensity level, so on.

  • PDF

Commercialization of Microencapsulated Electrophoretic Displays

  • McCreary, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.524-524
    • /
    • 2006
  • For decades, the pursuit of volume commercialization of low-power reflective displays with a paper-like look has been an unfulfilled dream. While steady technical progress was made throughout the late 1990s, there were still no volume products incorporating electronic paper displays (EPD) on the market. Now, microencapsulated electrophoretic display technology, also called electronic ink, has moved into volume production with a frontplane laminate (FPL) display component called E Ink Imaging Film™. This film is coated roll to roll on a flexible plastic substrate and integrated into a display module. Today, all-plastic segmented displays are being shipped as well as displays with electronic ink FPL being driven by glass TFT backplanes. A roadmap to active matrix flexible electrophoretic displays is being enabled by rapid technical progress on flexible TFT backplanes by a variety companies. Each of the approaches to these backplanes and flexible active matrix displays has different advantages for the various market segments being pursued including large format flexible displays for e-news and other reader applications, rollable displays for compact readers, and high resolution small format displays up to 400 ppi that can have fully integrated drive electronics to reduce size and drive down costs. Backplane approaches include Si on plastic, organic transistors on plastic, and Si transistors on flexible stainless steel substrate. Progress is also being made on next generation inks, including more reflective inks with higher contrast ratios. A full color 6 inch, 170 pixel per inch (PPI) active matrix display using a newer generation ink has been developed and this will be described and demonstrated. Large format segmented flexible displays will also be described.

  • PDF

Source Identification in 2-Dimensional Scattering Field Based on Inverse Problem (역문제를 이용한 2차원 산란장에서의 소스 추정)

  • Kim, Tae Yong;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1262-1268
    • /
    • 2014
  • Inverse problem is very interest in the sciences and engineering, in particular for modeling and monitoring applications. By applying inverse problem, it can be widely used to exploration of mineral resources, identification of underground cables and buried pipelines, and diagnostic imaging in medical area. In this paper, we firstly consider 2-dimensional EM scattering problem and present the FDTD method to estimate unknown source. In this case, non-linear CGM technique is used to investigate unknown sources corresponding to measured data obtained from forward problem in near field. The proposed technique for solving the inverse source problem presents a reasonable agreement and can be applied to investigate an internal source signal of embedded security module.

Optomechanical Design and Structural Analysis of Linear Astigmatism Free - Three Mirror System Telescope for CubeSat and Unmanned Aerial Vehicle

  • Han, Jimin;Lee, Sunwoo;Park, Woojin;Moon, Bongkon;Kim, Geon Hee;Lee, Dae-Hee;Kim, Dae Wook;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.38.3-38.3
    • /
    • 2021
  • We are developing an optomechanical design of infrared telescope for the CubeSat and Unmanned Aerial Vehicle (UAV) which adapts the Linear Astigmatism Free- Three Mirror System in the confocal off-axis condition. The small entrance pupil (diameter of 40 mm) and the fast telescope (f-number of 1.9) can survey large areas. The telescope structure consists of three mirror modules and a sensor module, which are assembled on the base frame. The mirror structure has duplex layers to minimize a surface deformation and physical size of a mirror mount. All the optomechanical parts and three freeform mirrors are made from the same material, i.e., aluminum 6061-T6. The Coefficient of Thermal Expansion matching single material structure makes the imaging performance to be independent of the thermal expansion. We investigated structural characteristics against external loads through Finite Element Analysis. We confirmed the mirror surface distortion by the gravity and screw tightening, and the overall contraction/expansion following the external temperature environment change (from -30℃ to +30℃).

  • PDF

Design and Analysis of Collimator in Spectrophotometer for Transmission Spectroscopy of Exoplanets

  • Choi, Yeonho;Kim, Kang-Min;Park, Chan;Jang, Jeong-Gyun;Han, Inwoo;Lee, Byeong-Cheol;Jang, Bi-Ho;Lee, Jong-Ung;Jeong, Eui-Jeong;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.68.1-68.1
    • /
    • 2020
  • 외계행성 대기 연구를 위한 투과스펙트럼 관측에 적합한 측분광기를 개발하고 있다. 이 측분광기의 광학적 특성은 380~685nm의 파장범위, FOV 10', R>~400이며, 슬릿부, collimator, VPH grism, imaging lens와 CCD로 구성되어 있는데, 보현산천문대 1.8m 망원경의 CIM(Cassegrain Interface Module)에 카트리지 방식으로 장착되어 사용한다. 그 중 doublet 렌즈 2개를 대칭으로 배치하여 초점거리 280mm가 되도록 만든 collimator는 슬릿을 통과한 f/8 입사광에서 지름 35 mm의 pupil을 만드는데, 이곳에 VPH grism을 설치하였다. collimator 렌즈는 axial spring과 radial spring으로 알루미늄 barrel에 고정하였다. 이 collimator barrel은 CIM에 쉽게 장탈착 할 수 있도록 모듈화 하였다. Collimator Barrel에 대한 구조 해석 결과, 망원경 이동에 따른 중력에 의한 변형은 충분히 작았다. Grism은 슬라이딩 형태로 장착되어 영상 확인도 가능하도록 설계하였다.

  • PDF