• Title/Summary/Keyword: Imaging, Three Dimensional

Search Result 707, Processing Time 0.026 seconds

Double Outlet Right Ventricle: In-Depth Anatomic Review Using Three-Dimensional Cardiac CT Data

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1894-1908
    • /
    • 2021
  • Double outlet right ventricle (DORV) is a relatively common congenital heart disease in which both great arteries are connected completely or predominantly to the morphologic RV. Unlike other congenital heart diseases, DORV demonstrates various anatomic and hemodynamic subtypes, mimicking ventricular septal defect, tetralogy of Fallot, transposition of the great arteries, and functional single ventricle. Because different surgical strategies are applied to different subtypes of DORV with ventricular septal defects, a detailed assessment of intracardiac anatomy should be performed preoperatively. Due to high spatial and contrast resolutions, cardiac CT can provide an accurate characterization of various intracardiac morphologic features of DORV. In this pictorial essay, major anatomic factors affecting surgical decision-making in DORV with ventricular septal defects were comprehensively reviewed using three-dimensional cardiac CT data. In addition, the surgical procedures available for these patients and major postoperative complications are described.

Enhanced Reconstruction of Heavy Occluded Objects Using Estimation of Variance in Volumetric Integral Imaging (VII) (Volumetric 집적영상에서 분산 추정을 이용한 심하게 은폐된 물체의 향상된 복원)

  • Hwang, Yong-Seok;Kim, Eun-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.389-393
    • /
    • 2008
  • Enhanced reconstruction of heavy occluded objects was represented using estimation of variance in computational integral imaging. The system is analyzed to extract information of enhanced reconstruction from an elemental images set. To obtain elemental images with enhanced resolution, low focus error, and large depth of focus, synthetic aperture integral imaging (SAII) utilizing a digital camera has been adopted. The focused areas of the reconstructed image are varied with the distance of the reconstruction plane. When an occluded object is occluded heavily, an occluded object can not be reconstructed by removing the occluding object. To obtain reconstruction of the occluded object by remedying the effect of heavy occlusion, the statistical technique has been adopted.

Three-Dimensional Visualization and Recognition of Micro-objects using Photon Counting Integral Imaging Microscopy (광자 계수 집적 영상 현미경을 사용한 마이크로 물체의 3차원 시각화와 인식)

  • Cho, Myungjin;Cho, Giok;Shin, Donghak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1207-1212
    • /
    • 2015
  • In this paper, we propose three-dimensional (3D) visualization and recognition techniques of micro-objects under photon-starved conditions using photon counting integral imaging microscopy. To capture high resolution 2D images with different perspectives in the proposed method, we use Synthetic Aperture Integral Imaging (SAII). Poisson distribution which is mathematical model of photon counting imaging system is used to extract photons from the images. To estimate 3D images with 2D photon counting images, the statistical estimation is used. Therefore, 3D images can be obtained and visualized without any damage under photon-starved conditions. In addition, 3D object recognition can be implemented using nonlinear correlation filters. To prove the usefulness of our technique, we implemented the optical experiment.

Multispectral X-ray imaging to distinguish among dental materials

  • Peter, Ann-Christin;Schnaubelt, Matthias;Gente, Michael
    • Imaging Science in Dentistry
    • /
    • v.47 no.4
    • /
    • pp.247-254
    • /
    • 2017
  • Purpose: Dual-energy X-ray imaging is widely used today in various areas of medicine and in other applications. However, no similar technique exists for dental applications. In this study, we propose a dual-energy technique for dental diagnoses based on voltage-switching. Materials and Methods: The method presented in this study allowed different groups of materials to be classified based on atomic number, thereby enabling two-dimensional images to be colorized. Computer simulations showed the feasibility of this approach. Using a number of different samples with typical biologic and synthetic dental materials, the technique was applied to radiographs acquired with a commercially available dental X-ray unit. Results: This technique provided a novel visual representation of the intraoral environment in three colors, and is of diagnostic value when compared to state-of-the-art grayscale images, since the oral cavity often contains multiple permanent foreign materials. Conclusion: This work developed a technique for two-dimensional dual-energy imaging in the context of dental applications and showed its feasibility with a commercial dental X-ray unit in simulation and experimental studies.

Comparison of conventional lateral cephalograms with corresponding CBCT radiographs

  • Park, Chang-Seo;Park, Jae-Kyu;Kim, Huijun;Han, Sang-Sun;Jeong, Ho-Gul;Park, Hyok
    • Imaging Science in Dentistry
    • /
    • v.42 no.4
    • /
    • pp.201-205
    • /
    • 2012
  • Purpose: This study was performed to assess the compatibility of cone beam computed tomography (CBCT) synthesized cephalograms with conventional cephalograms, and to find a method for obtaining normative values for three-dimensional (3D) assessments. Materials and Methods: The sample group consisted of 10 adults with normal occlusion and well-balanced faces. They were imaged using conventional and CBCT cephalograms. The CBCT cephalograms were synthesized from the CBCT data using OnDemand 3D software. Twenty-one angular and 12 linear measurements from each imaging modality were compared and analyzed using paired-t test. Results: The linear measurements between the two imaging modalities were not statistically different (p>0.05) except for the U1 to facial plane distance. The angular measurements between the two imaging modalities were not statistically different (p>0.05) with the exception of the gonial angle, ANB difference, and facial convexity. Conclusion: Two-dimensional cephalometric norms could be readily used for 3D quantitative assessment, if corrected for lateral cephalogram distortion.

Ultrasonic Transducers for Medical Volumetric Imaging

  • Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3E
    • /
    • pp.111-118
    • /
    • 2010
  • Three-dimensional ultrasound imaging is a new, exciting technology that allows physicians to use ultrasound to view pathology as a volume, thereby enhancing comprehension of patient anatomy. In this paper, a brief history of the 3-D ultrasound imaging is described in accordance with the development of transducer technology. Then, two representative types of 3-D imaging transducers are reviewed with description of the concept and operation principle of each type: mechanical transducer and matrix array transducer. The mechanical transducer is detailed into free-hand scanning and sequential scanning types. Advantages of each transducer over the other and the technical issues for further performance enhancement are also presented.

Curved Projection Integral Imaging Using an Additional Large-Aperture Convex Lens for Viewing Angle Improvement

  • Hyun, Joo-Bong;Hwang, Dong-Choon;Shin, Dong-Hak;Lee, Byung-Gook;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.105-110
    • /
    • 2009
  • In this paper, we propose a curved projection integral imaging system to improve the horizontal and vertical viewing angles. The proposed system can be easily implemented by additional use of a large-aperture convex lens in conventional projection integral imaging. To obtain the simultaneous display of 3D images through real and virtual image fields, we propose a computer-generated pickup method based on ray optics and elemental images, which are synthesized for the proposed system. To show the feasibility of the proposed system, preliminary experiments are carried out. Experimental results indicate that our system improves the viewing angle and displays 3D images simultaneously in real and virtual image fields.

  • PDF

Holographic Three-dimensional Computer-Aided Imaging

  • Rosen, Joseph;Abookasis, David
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.433-436
    • /
    • 2003
  • Recent developments in a new method of holographic computer-aided imaging will be reviewed. Our hologram is computed from angular viewpoints of the observed 3D scene. The recorded data are processed to yield a 2D computer-generated hologram. When this hologram is illuminated properly, a 3D image of the scene is reconstructed.

  • PDF

Simulation of Moire Effect in 3D Displays

  • Saveljev, Vladimir;Kim, Sung-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.310-315
    • /
    • 2010
  • Theoretical and experimental investigations of moires in 3D displays were performed. To describe and minimize moires, we propose the polar representation form of moire waves. The experimental and theoretical data are in good agreement except in the neighborhood of the minimization angle. The implicit formulas are found for visible moires of line gratings at finite distances. The computer simulation and the physical experiments confirm the moire appearance for this case.

Three Dimensional Reconstruction of Structural Defect of Thin Film Transistor Device by using Dual-Beam Focused Ion Beam and Scanning Electron Microscopy (집속이온빔장치와 주사전자현미경을 이용한 박막 트랜지스터 구조불량의 3차원 해석)

  • Kim, Ji-Soo;Lee, Seok-Ryoul;Lee, Lim-Soo;Kim, Jae-Yeal
    • Applied Microscopy
    • /
    • v.39 no.4
    • /
    • pp.349-354
    • /
    • 2009
  • In this paper we have constructed three dimensional images and examined structural failure on thin film transistor (TFT) liquid crystal display (LCD) by using dual-beam focused ion beam (FIB) and IMOD software. Specimen was sectioned with dual-beam focused ion beam. Series of two dimensional images were obtained by scanning electron microscopy. Three dimensional reconstruction was constructed from them by using IMOD software. The short defect between Gate layer and Data layer was found from the result of three dimensional reconstruction. That phenomena made the function of the gate lost and data signal supplied to the electrode though the Drain continuously. That signal made continuous line defect. The result of the three dimensional reconstruction, serial section, SEM imaging by using the FIB will be the foundation of the next advanced study.