• 제목/요약/키워드: Imagined speech

검색결과 3건 처리시간 0.016초

Deep Belief Network를 이용한 뇌파의 음성 상상 모음 분류 (Vowel Classification of Imagined Speech in an Electroencephalogram using the Deep Belief Network)

  • 이태주;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.59-64
    • /
    • 2015
  • In this paper, we found the usefulness of the deep belief network (DBN) in the fields of brain-computer interface (BCI), especially in relation to imagined speech. In recent years, the growth of interest in the BCI field has led to the development of a number of useful applications, such as robot control, game interfaces, exoskeleton limbs, and so on. However, while imagined speech, which could be used for communication or military purpose devices, is one of the most exciting BCI applications, there are some problems in implementing the system. In the previous paper, we already handled some of the issues of imagined speech when using the International Phonetic Alphabet (IPA), although it required complementation for multi class classification problems. In view of this point, this paper could provide a suitable solution for vowel classification for imagined speech. We used the DBN algorithm, which is known as a deep learning algorithm for multi-class vowel classification, and selected four vowel pronunciations:, /a/, /i/, /o/, /u/ from IPA. For the experiment, we obtained the required 32 channel raw electroencephalogram (EEG) data from three male subjects, and electrodes were placed on the scalp of the frontal lobe and both temporal lobes which are related to thinking and verbal function. Eigenvalues of the covariance matrix of the EEG data were used as the feature vector of each vowel. In the analysis, we provided the classification results of the back propagation artificial neural network (BP-ANN) for making a comparison with DBN. As a result, the classification results from the BP-ANN were 52.04%, and the DBN was 87.96%. This means the DBN showed 35.92% better classification results in multi class imagined speech classification. In addition, the DBN spent much less time in whole computation time. In conclusion, the DBN algorithm is efficient in BCI system implementation.

Electroencephalography-based imagined speech recognition using deep long short-term memory network

  • Agarwal, Prabhakar;Kumar, Sandeep
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.672-685
    • /
    • 2022
  • This article proposes a subject-independent application of brain-computer interfacing (BCI). A 32-channel Electroencephalography (EEG) device is used to measure imagined speech (SI) of four words (sos, stop, medicine, washroom) and one phrase (come-here) across 13 subjects. A deep long short-term memory (LSTM) network has been adopted to recognize the above signals in seven EEG frequency bands individually in nine major regions of the brain. The results show a maximum accuracy of 73.56% and a network prediction time (NPT) of 0.14 s which are superior to other state-of-the-art techniques in the literature. Our analysis reveals that the alpha band can recognize SI better than other EEG frequencies. To reinforce our findings, the above work has been compared by models based on the gated recurrent unit (GRU), convolutional neural network (CNN), and six conventional classifiers. The results show that the LSTM model has 46.86% more average accuracy in the alpha band and 74.54% less average NPT than CNN. The maximum accuracy of GRU was 8.34% less than the LSTM network. Deep networks performed better than traditional classifiers.

EEG기반 언어 인식 시스템을 위한 국제음성기호를 이용한 모음 특징 추출 연구 (EEG based Vowel Feature Extraction for Speech Recognition System using International Phonetic Alphabet)

  • 이태주;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제24권1호
    • /
    • pp.90-95
    • /
    • 2014
  • 인간과 기계를 연결하는 새로운 인터페이스인 Brain-computer interface (BCI)를 이용해 휠체어를 제어하거나 단어를 입력하는 등, 사용자를 위한 다양한 장치를 개발하는 연구들이 진행되어 왔다. 특히 최근에는 뇌파를 이용한 음성인식을 구현하고 이를 통해 무음통신 등에 적용하려는 시도들이 있었다. 본 논문에서는 이러한 연구의 일환으로 electroencephalogram (EEG) 기반의 언어 인식 시스템을 개발하기 위한 기초 단계로서, 국제음성기호에 기반을 둔 모음들의 특징을 추출하는 방법에 대한 연구를 진행하였다. 실험은 건장한 세 명의 남성 피험자를 대상으로 진행되었으며, 한 개의 모음을 제시하는 첫 번째 실험 과정과 두 개의 연속된 모음을 제시하는 두 번째 실험 과정으로 두 단계에 나누어서 실험이 진행되었다. 습득된 64개의 채널중 선택적으로 32개의 채널만을 사용해 특징을 추출하였으며, 사고 활동과 관련된 전두엽과 언어활동에 관련된 측두엽을 기준으로 영역을 선택하였다. 알고리즘 적용을 위해서 특징으로는 신호의 고유 값을 사용하였고, support vector machine (SVM)을 이용하여 분류를 수행하였다. 실험 결과, 첫 번째 단계의 실험을 통해서, 언어의 뇌파를 분석하기 위해서는 10차원 이상의 특징 벡터를 사용해야 됨을 알게 되었고, 11차원의 특징 벡터를 사용할 경우, 평균분류율은 최고 95.63 %로 /a/와 /o/를 분류할 때 나타났고, 가장 낮은 분류율을 보이는 모음은 /a/와 /u/로 86.85 %였다. 두 번째 단계의 실험에서는 두 개 이상의 모음을 발음하는 것이 단일 모음 발음과 어떤 차이가 있는지 확인해 보았다.