• Title/Summary/Keyword: Images quality

Search Result 3,135, Processing Time 0.029 seconds

Development of New Photogrammetric Software for High Quality Geo-Products and Its Performance Assessment

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Rhee, Soo-Ahm;Kim, Hyeon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.319-327
    • /
    • 2012
  • In this paper, we introduce a newly developed photogrammetric software for automatic generation of high quality geo-products and its performance assessment carried out using various satellite images. Our newly developed software provides the latest techniques of an optimized sensor modelling, ortho-image generation and automated Digital Elevation Model (DEM) generation for diverse remote sensing images. In particular, images from dual- and multi-sensor images can be integrated for 3D mapping. This can be a novel innovation toward a wider applicability of remote sensing data, since 3D mapping has been limited within only single-sensor so far. We used Kompsat-2, Ikonos, QuickBird, Spot-5 high resolution satellite images to test an accuracy of 3D points and ortho-image generated by the software. Outputs were assessed by comparing reliable reference data. From various sensor combinations 3D mapping were implemented and their accuracy was evaluated using independent check points. Model accuracy of 1~2 pixels or better was achieved regardless of sensor combination type. The high resolution ortho-image results are consistent with the reference map on a scale of 1:5,000 after being rectified by the software and an accuracy of 1~2 pixels could be achieved through quantitative assessment. The developed software offers efficient critical geo-processing modules of various remote sensing images and it is expected that the software can be widely used to meet the demand on the high-quality geo products.

Investigation of the Effect of kV Combinations on Image Quality for Virtual Monochromatic Imaging Using Dual-Energy CT: A Phantom Study

  • Jeon, Pil-Hyun;Chung, Heejun;Kim, Daehong
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Background: In this study, we investigate the image quality of virtual monochromatic images synthesized from dual-energy computed tomography (DECT) at voltages of 80/140 kV and 100/140 kV. Materials and Methods: Virtual monochromatic images of a phantom are synthesized from DECT scans from 40 to 70 keV in steps of 1 keV under the two combinations of tube voltages. The dose allocation of dual-energy (DE) scan is 50% for both low- and high-energy tubes. The virtual monochromatic images are compared to single-energy (SE) images at the same radiation dose. In the DE images, noise is reduced using the 100/140 kV scan at the optimal monochromatic energy. Virtual monochromatic images are reconstructed from 40 to 70 keV in 1-keV increments and analyzed using two quality indexes: noise and contrast-to-noise ratio (CNR). Results and Discussion: The DE scan mode with the 100/140 kV protocol achieved a better maximum CNR compared to the 80/140 kV protocol for various materials, except for adipose and brain. Image noise is reduced with the 100/140 kV protocol. The CNR values of DE with the 100/140 kV protocol is similar to or higher than that of SE at 120 kV at the same radiation dose. Furthermore, the maximum CNR with the 100/140 kV protocol is similar to or higher than that of the SE scan at 120 kV. Conclusion: It was found that the CNR achieved with the 100/140 kV protocol was better than that with the 80/140 kV protocol at optimal monochromatic energies. Virtual monochromatic imaging using the 100/140 kV protocol could be considered for application in breast, brain, lung, liver, and bone CT in accordance with the CNR results.

Image and Display Quality Evaluation

  • Ha, Yeong-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1224-1227
    • /
    • 2009
  • When evaluating the quality of images and displays, it is important to combine the characteristics as perceived by the human visual system and measured by equipment using subjective and objective methods, respectively. In the case of objective methods, the quality of a display is measured using colorimetric or radiometric devices according to existing standards covering the color temperature, gamut size, gamma characteristic, and device characterization. Meanwhile, subjective methods assess the quality of an image using the human visual system based on a comparison with a reference or counterpart using such metrics as the sharpness, noise, contrast, saturation, and color accuracy. Objective and subjective methods are usually used together in comparison, as ultimately it is observers watching images on a display. In addition to existing objective methods, a new image quality metric is also introduced as regards the JPEG compression ratio that is reflected in the relationship between the gamut size and the color fidelity in CIELAB color space.

  • PDF

Colorization of C-Scan Ultrasonic Image and Automatic Evaluation Algorithm of Welding Quality (C-Scan 초음파 영상 컬러화 및 용접 품질 자동 평가 시스템)

  • Kim, Tae-Kyu;Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1271-1278
    • /
    • 2018
  • The NDT using ultrasonic is largely divided into A-Scan and C-Scan methods. Since A-Scan method is subject to subjective judgement by trained personnel, C-Scan method has been introduced, which presents the weld area in two dimensions by placing the transducers two dimensionally used in the A-Scan method. Therefore, it is necessary to develop equipment that can provide weld quality without the help of a welding expert and the presentation of effective C-Scan images. Thus, in this paper, the algorithms that express a low resolution 2-dimensional gray image formed by C-Scan method as a high-resolution color C-Scan image and automatically determine the weld quality from the generated C-Scan color image. The high resolution color C-Scan images proposed in this paper allow the exact shape of the weld point to be expressed, and an objective algorithm to use this image to automatically determine weld quality.

Acquisition and application of digital medical image in radiology (디지털 방사선 의료영상획득과 적용)

  • ;Nam, Sang Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1528-1535
    • /
    • 1997
  • Many radiological modalities has been applied to medicine as a basic fundamental diagnosis and therapy recently. The prevalence of computer systems affect most images to be digitized. However conventional X-ray film images are not digital images eventhough they covers 70% of all radiologica images. This is the hinderacne of building PACS. In this paper all radiological digital imaging parts such as DSA. CR. MRI. SPECT. PET and ultrasonography were briefly introduced and the applications were described. In brief digital radiography contribute to enhance the medical service quality. And the digital substituition of conventional X-ray film image is inevitable.

  • PDF

Evaluation of the Accuracy of Distance Measurements on 3D Volume-rendered Image of Human Skull Using Multi-detector CT: Effects of Acquisition Section Thickness and Reconstruction Section Thickness

  • Haijo Jung;Kim, Hee-Joung;Lee, Sang-Ho;Kim, Dong-Wook;Soonil Hong;Kim, Dong-Hyeon;Son, Hye-Kyung;Wonsuk Kang;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.457-460
    • /
    • 2002
  • The image quality of three-dimensional (3D) images has been widely investigated by the qualitative analysis method. A need remains for an objective and quantitative method to assess the image quality of 3D volume-rendered images. The purpose of this study was to evaluate the quantitative accuracy of distance measurements on 3D volume-rendered images of a dry human skull by using multi-detector computed tomography (MDCT). A radiologist measured five times the twenty-one direct measurement line items composed among twelve reference points on the skull surface with a digital vernier caliper. The water filled skull specimen was scanned with a MDCT according to the section thicknesses of 1.25, 2.50, 3.75, and 5.00 mm for helical (high quality; pitch 3:1) scan mode. MDCT data were reconstructed with its acquisition section thickness and with 1.25 mm section thickness for all scans. An observer also measured seven times the corresponding items on 3D volume-rendered images with measuring tools provided by volumetric analysis software. The quantitative accuracy of distance measurements on the 3D volume-rendered images was statistically evaluated (p-value < 0.05) by comparatively analyzing these measurements with the direct distance measurements. The accuracy of distance measurements on the 3D volume-rendered MDCT images acquired with 1.25, 2.50, 3,75 and 5.00 mm section thickness and reconstructed with its section thickness were 48%, 33%, 23%, and 14%, respectively. Meanwhile, there were insignificant statistical differences in accuracy of distance measurements among 3D volume-rendered images reconstructed with 1.25 mm section thickness for the each acquisition section thickness. MDCT images acquired with thick section thickness and reconstructed with thin section thickness in helical scan mode should be effectively used in medical planning of 3D volume-rendered images. The quantitative analysis of distance measurement may be a useful tool for evaluating the quantitative accuracy and the defining optimal parameters of 3D volume-rendered CT images.

  • PDF

Metrics for Low-Light Image Quality Assessment

  • Sangmin Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.11-19
    • /
    • 2023
  • In this paper, it is confirmed that the metrics used to evaluate image quality can be applied to low-light images. Due to the nature of low-illumination images, factors related to light create various noise patterns, and the smaller the amount of light, the more severe the noise. Therefore, in situations where it is difficult to obtain a clean image without noise, the quality of a low-illuminance image from which noise has been removed is often judged by the human eye. In this paper, noise in low-illuminance images for which ground truth cannot be obtained is removed using Noise2Noise, and spatial resolution and radial resolution are evaluated using ISO 12233 charts and colorchecker as metrics such as MTF and SNR. It can be shown that the quality of the low-illuminance image, which has been evaluated mainly for qualitative evaluation, can also be evaluated quantitatively.

Apical periodontitis in mesiobuccal roots of maxillary molars: influence of anatomy and quality of root canal treatment, a CBCT study

  • Samantha Jannone Carrion;Marcelo Santos Coelho;Adriana de Jesus Soares;Marcos Frozoni
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.37.1-37.9
    • /
    • 2022
  • Objectives: This study aimed to evaluate the prevalence of apical periodontitis (AP) in the mesiobuccal roots of root canal-treated maxillary molars. Materials and Methods: One thousand cone-beam computed tomography images of the teeth were examined by 2 dental specialists in oral radiology and endodontics. The internal anatomy of the roots, Vertucci's classification, quality of root canal treatment, and presence of missed canals were evaluated; additionally, the correlation between these variables and AP was ascertained. Results: A total of 1,000 roots (692 first molars and 308 second molars) encompassing 1,549 canals were assessed, and the quality of the root canal filling in the majority (56.9%) of the canals was satisfactory. AP was observed in 54.4% of the teeth. A mesiolingual canal in the mesiobuccal root (MB2 canal) was observed in 54.9% of the images, and the majority (83.5%) of these canals were not filled. Significant associations were observed between the presence of an MB2 canal and the quality of the root canal filling and the presence of AP. Conclusions: AP was detected in more than half of the images. The MB2 canals were frequently missed or poorly filled.

Denoising Diffusion Null-space Model and Colorization based Image Compression

  • Indra Imanuel;Dae-Ki Kang;Suk-Ho Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.22-30
    • /
    • 2024
  • Image compression-decompression methods have become increasingly crucial in modern times, facilitating the transfer of high-quality images while minimizing file size and internet traffic. Historically, early image compression relied on rudimentary codecs, aiming to compress and decompress data with minimal loss of image quality. Recently, a novel compression framework leveraging colorization techniques has emerged. These methods, originally developed for infusing grayscale images with color, have found application in image compression, leading to colorization-based coding. Within this framework, the encoder plays a crucial role in automatically extracting representative pixels-referred to as color seeds-and transmitting them to the decoder. The decoder, utilizing colorization methods, reconstructs color information for the remaining pixels based on the transmitted data. In this paper, we propose a novel approach to image compression, wherein we decompose the compression task into grayscale image compression and colorization tasks. Unlike conventional colorization-based coding, our method focuses on the colorization process rather than the extraction of color seeds. Moreover, we employ the Denoising Diffusion Null-Space Model (DDNM) for colorization, ensuring high-quality color restoration and contributing to superior compression rates. Experimental results demonstrate that our method achieves higher-quality decompressed images compared to standard JPEG and JPEG2000 compression schemes, particularly in high compression rate scenarios.

Fractal Coding of Three Dimensional Medical Images with Perceptually Enhanced Matching (삼차원 의학 영상에서 시각적으로 향상된 정합을 사용한 프랙탈 부호화)

  • Ahn, C.B;Song, Y.C;Shin, H.S
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.305-312
    • /
    • 1996
  • A new three dimensional fractal coding is proposed with a perceptually enhanced matching. Since most of medical images (e.g. computed tomoyaphy or magnetic resonance images) have three dimensional characters, searching regions are extended to adjacent slices. For a perceptually enhanced matching, a high frequency boost filter is used for pre-filtering images to be encoded, and a least mean square error matching is applied to the edge enhanced Images rather than the original images. From simulation with magnetic resonance images($255\times255$, 8bits/pixel), reconstructed images by the proposed compression algorithm show much improved subjective image quality with higher peak signnal-to-noise ratio compared to those by existing fractal coding algorithms at compression ratios of about 10.

  • PDF