• Title/Summary/Keyword: Image-based reconstruction

Search Result 695, Processing Time 0.045 seconds

Realistic 3D Scene Reconstruction from an Image Sequence (연속적인 이미지를 이용한 3차원 장면의 사실적인 복원)

  • Jun, Hee-Sung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.183-188
    • /
    • 2010
  • A factorization-based 3D reconstruction system is realized to recover 3D scene from an image sequence. The image sequence is captured from uncalibrated perspective camera from several views. Many matched feature points over all images are obtained by feature tracking method. Then, these data are supplied to the 3D reconstruction module to obtain the projective reconstruction. Projective reconstruction is converted to Euclidean reconstruction by enforcing several metric constraints. After many triangular meshes are obtained, realistic reconstruction of 3D models are finished by texture mapping. The developed system is implemented in C++, and Qt library is used to implement the system user interface. OpenGL graphics library is used to realize the texture mapping routine and the model visualization program. Experimental results using synthetic and real image data are included to demonstrate the effectiveness of the developed system.

Refinements of Multi-sensor based 3D Reconstruction using a Multi-sensor Fusion Disparity Map (다중센서 융합 상이 지도를 통한 다중센서 기반 3차원 복원 결과 개선)

  • Kim, Si-Jong;An, Kwang-Ho;Sung, Chang-Hun;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.298-304
    • /
    • 2009
  • This paper describes an algorithm that improves 3D reconstruction result using a multi-sensor fusion disparity map. We can project LRF (Laser Range Finder) 3D points onto image pixel coordinatesusing extrinsic calibration matrixes of a camera-LRF (${\Phi}$, ${\Delta}$) and a camera calibration matrix (K). The LRF disparity map can be generated by interpolating projected LRF points. In the stereo reconstruction, we can compensate invalid points caused by repeated pattern and textureless region using the LRF disparity map. The result disparity map of compensation process is the multi-sensor fusion disparity map. We can refine the multi-sensor 3D reconstruction based on stereo vision and LRF using the multi-sensor fusion disparity map. The refinement algorithm of multi-sensor based 3D reconstruction is specified in four subsections dealing with virtual LRF stereo image generation, LRF disparity map generation, multi-sensor fusion disparity map generation, and 3D reconstruction process. It has been tested by synchronized stereo image pair and LRF 3D scan data.

  • PDF

Super-resolution Reconstruction Method for Plenoptic Images based on Reliability of Disparity (시차의 신뢰도를 이용한 플렌옵틱 영상의 초고해상도 복원 방법)

  • Jeong, Min-Chang;Kim, Song-Ran;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.425-433
    • /
    • 2018
  • In this paper, we propose a super-resolution reconstruction algorithm for plenoptic images based on the reliability of disparity. The subperture image generated by the Flanoptic camera image is used for disparity estimation and reconstruction of super-resolution image based on TV_L1 algorithm. In particular, the proposed image reconstruction method is effective in the boundary region where disparity may be relatively inaccurate. The determination of reliability of disparity vector is based on the upper, lower, left and right positional relationship of the sub-aperture image. In our method, the unreliable vectors are excluded in reconstruction. The performance of the proposed method was evaluated by comparing to a bicubic interpolation method, a conventional disparity based method and dictionary based method. The experimental results show that the proposed method provides the best performance in terms of PSNR(Peak Signal to noise ratio), SSIM(Structural Similarity).

MCNP-polimi simulation for the compressed-sensing based reconstruction in a coded-aperture imaging CAI extended to partially-coded field-of-view

  • Jeong, Manhee;Kim, Geehyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.199-207
    • /
    • 2021
  • This paper deals with accurate image reconstruction of gamma camera using a coded-aperture mask based on pixel-type CsI(Tl) scintillator coupled with silicon photomultipliers (SiPMs) array. Coded-aperture imaging (CAI) system typically has a smaller effective viewing angle than Compton camera. Thus, if the position of the gamma source to be searched is out of the fully-coded field-of-view (FCFOV) region of the CAI system, artifacts can be generated when the image is reconstructed by using the conventional cross-correlation (CC) method. In this work, we propose an effective method for more accurate reconstruction in CAI considering the source distribution of partially-coded field-of-view (PCFOV) in the reconstruction in attempt to overcome this drawback. We employed an iterative algorithm based on compressed-sensing (CS) and compared the reconstruction quality with that of the CC algorithm. Both algorithms were implemented and performed a systematic Monte Carlo simulation to demonstrate the possiblilty of the proposed method. The reconstructed image qualities were quantitatively evaluated in sense of the root mean square error (RMSE) and the peak signal-to-noise ratio (PSNR). Our simulation results indicate that the proposed method provides more accurate location information of the simulated gamma source than the CC-based method.

A Visualization System of Brain MR image based on VTK

  • Du, Ruoyu;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.336-339
    • /
    • 2012
  • VTK is a free but professional development platform for images three-dimensional (3D) reconstruction and processing. It is powerful, open-source, and users can customize their own needs by self-development of great flexibility. To give the doctors more and detailed information by simulate dissection to the 3-D brain MRI image after reconstruction. A Visualization System (VS) is proposed to achieve 3D brain reconstruction and virtual dissection functions. Based on the free VTK visualization development platform and Visual Studio 2010 IDE development tools, through C++ language, using real people's MRI brain dataset, we realized the images 3D reconstruction and also its applications and extensions correspondingly. The display effect of the reconstructed 3D image is well and intuitive. With the related operations such as measurement, virtual dissection and so on, the good results we desired could be achieved.

Reconstruction of a 3D Model using the Midpoints of Line Segments in a Single Image (한 장의 영상으로부터 선분의 중점 정보를 이용한 3차원 모델의 재구성)

  • Park Young Sup;Ryoo Seung Taek;Cho Sung Dong;Yoon Kyung Hyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.4
    • /
    • pp.168-176
    • /
    • 2005
  • We propose a method for 3-dimensionally reconstructing an object using a line that includes the midpoint information from a single image. A pre-defined polygon is used as the primitive and the recovery is processed from a single image. The 3D reconstruction is processed by mapping the correspondence point of the primitive model onto the photo. In the recent work, the reconstructions of camera parameters or error minimizing methods through iterations were used for model-based 3D reconstruction. However, we proposed a method for the 3D reconstruction of primitive that consists of the segments and the center points of the segments for the reconstruction process. This method enables the reconstruction of the primitive model to be processed using only the focal length of various camera parameters during the segment reconstruction process.

Reconstructing 3-D Facial Shape Based on SR Imagine

  • Hong, Yu-Jin;Kim, Jaewon;Kim, Ig-Jae
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.57-61
    • /
    • 2014
  • We present a robust 3D facial reconstruction method using a single image generated by face-specific super resolution technique. Based on the several consecutive frames with low resolution, we generate a single high resolution image and a three dimensional facial model based on it. To do this, we apply PME method to compute patch similarities for SR after two-phase warping according to facial attributes. Based on the SRI, we extract facial features automatically and reconstruct 3D facial model with basis which selected adaptively according to facial statistical data less than a few seconds. Thereby, we can provide the facial image of various points of view which cannot be given by a single point of view of a camera.

Low-Rank Representation-Based Image Super-Resolution Reconstruction with Edge-Preserving

  • Gao, Rui;Cheng, Deqiang;Yao, Jie;Chen, Liangliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3745-3761
    • /
    • 2020
  • Low-rank representation methods already achieve many applications in the image reconstruction. However, for high-gradient image patches with rich texture details and strong edge information, it is difficult to find sufficient similar patches. Existing low-rank representation methods usually destroy image critical details and fail to preserve edge structure. In order to promote the performance, a new representation-based image super-resolution reconstruction method is proposed, which combines gradient domain guided image filter with the structure-constrained low-rank representation so as to enhance image details as well as reveal the intrinsic structure of an input image. Firstly, we extract the gradient domain guided filter of each atom in high resolution dictionary in order to acquire high-frequency prior information. Secondly, this prior information is taken as a structure constraint and introduced into the low-rank representation framework to develop a new model so as to maintain the edges of reconstructed image. Thirdly, the approximate optimal solution of the model is solved through alternating direction method of multipliers. After that, experiments are performed and results show that the proposed algorithm has higher performances than conventional state-of-the-art algorithms in both quantitative and qualitative aspects.

Evaluation of Noise Level and Blind Quality in CT Images using Advanced Modeled Iterative Reconstruction (ADMIRE) (고급 모델 반복 재구성법 (ADMIRE)을 사용한 CT 영상에서의 노이즈 레벨 및 블라인드 화질 평가)

  • Shim, Jina;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.203-209
    • /
    • 2022
  • One of the typical methods for lowering radiation dose while maintaining image quality of computed tomography (CT) is the use of model-based iterative reconstruction (MBIR). This study is to evaluate the image quality by adjusting the strength of the advanced modeled iterative reconstruction (ADMIRE), which is well known as a representative model of MBIR. The study was conducted using phantom, and CT images were obtained while adjusting the strength of ADMIRE in units of 1 to 5. Quantitative evaluation includes noise levels using coefficient of variation (COV) and contrast to noise ratio (CNR), as well as natural image quality evaluation (NIQE) and blind/referenceless image spatial quality evaluator (BRISQUE). As a result, in both noise level and blind quality evaluation results, the higher the strength of ADMIRE, the better the results were derived. In particular, it was confirmed that COV and CNR were improved 1.89 and 1.75 times at ADMIRE 5 compared to ADMIRE 1, respectively, and NIQE and BRISQUE were proved to be improved 1.35 and 1.22 times at ADMIRE 5 compared to ADMIRE 1, respectively. In conclusion, this study was proved that the reconstruction strength of ADMIRE had a great influence on the noise level and overall image quality evaluation of CT images.

Speed Optimization Design of 3D Medical Image Reconstruction System Based on PC (PC 기반의 3차원 의료영상 재구성 시스템의 고속화 설계)

  • Bae, Su-Hyeon;Kim, Seon-Ho;Yu, Seon-Guk
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.189-198
    • /
    • 1998
  • 3D medical image reconstruction techniques are useful to figure out complex 3D structures from the set of 2D sections. In the paper, 3D medical image reconstruction system is constructed under PC environment and programmed based on modular programming by using Visual C++ 4.2. The whole procedures are composed of data preparation, gradient estimation, classification, shading, transformation and ray-casting & compositing. Three speed optimization techniques are used for accelerating 3D medical image reconstruction technique. One is to reduce the rays when cast rays to reconstruct 3D medical image, another is to reduce the voxels to be calculated and the other is to apply early ray termination. To implement 3D medical image reconstruction system based on PC, speed optimization techniques are experimented and applied.

  • PDF