• Title/Summary/Keyword: Image-based modeling

Search Result 650, Processing Time 0.023 seconds

An invisible watermarking scheme using the SVD (특이치 분해를 이용한 비가시적 워터마크 기법)

  • 유주연;유지상;김동욱;김대경
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1118-1122
    • /
    • 2003
  • In this paper, we propose a new invisible digital watermarking scheme based on wavelet transform using singular value decomposition. Embedding process is started by decomposing the lowest frequency band image with 3${\times}$3 block among which we define the watermark block chosen by a key set; entropy and condition number of the block. A watermark is embedded in the singular values of each watermark blocks. This provides a robust watermarking in lowest possible time-frequency domain. To detect the watermark, we are locally modeling an attack as 3${\times}$3 matrices on the watermark blocks. Combining with the SVD and the attack matrices, we estimate watermark set corresponding to the watermark blocks. In each watermark block, we determine an optimal watermark which is justified by the T-testing. A numerical experiment shows that the proposed watermarking scheme efficiently detects the watermarks from several JPEG attacks.

Development of a Fall Detection System Using Fish-eye Lens Camera (어안 렌즈 카메라 영상을 이용한 기절동작 인식)

  • So, In-Mi;Han, Dae-Kyung;Kang, Sun-Kyung;Kim, Young-Un;Jong, Sung-tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.97-103
    • /
    • 2008
  • This study is to present a fainting motion recognizing method by using fish-eye lens images to sense emergency situations. The camera with fish-eye lens located at the center of the ceiling of the living room sends images, and then the foreground pixels are extracted by means of the adaptive background modeling method based on the Gaussian complex model, which is followed by tracing of outer points in the foreground pixel area and the elliptical mapping. During the elliptical tracing, the fish-eye lens images are converted to fluoroscope images. the size and location changes, and moving speed information are extracted to judge whether the movement, pause, and motion are similar to fainting motion. The results show that compared to using fish-eye lens image, extraction of the size and location changes. and moving speed by means of the conversed fluoroscope images has good recognition rates.

  • PDF

Dynamic Strategies for Enhancing Apartment Brand Equity in Korean Housing Market (아파트 브랜드 자산 형성 과정 분석을 통한 관리 전략 - System Dynamics를 활용한 전략 수립 -)

  • Choi, Minji;Park, Moonseo;Lee, Hyun-Soo;Hwang, Sungjoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.65-77
    • /
    • 2013
  • Apartment brand has been used as a new strategy in Korean housing market to fulfill customer's changing needs for buying houses. A number of construction companies have succeeded in brand awareness and image building, however, they still struggle to establish brand loyalty and manage brand equity elements in balance. The purpose of this study is to analyze the brand equity building process of apartment products in Korean housing market and determine causal relationships among variables to propose strategies for long-term prosperity of the construction companies. System Dynamics modeling method is applied to describe how variables affect and are linked to each other in terms of building equity and enhancing company profits from customers' brand awareness to brand loyalty. Based on the analysis model, strategies for construction companies depending on their market share were proposed and this may support the company to achieve financial success and competitiveness among its competitors in the fast-changing market.

A Study on the Conceptual Modeling and Implementation of a Semantic Search System (시맨틱 검색 시스템의 개념적 모형화와 그 구현에 대한 연구)

  • Hana, Dong-Il;Kwonb, Hyeong-In;Chong, Hak-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.1
    • /
    • pp.67-84
    • /
    • 2008
  • This paper proposes a design and realization for the semantic search system. The proposed model includes three Architecture Layers of a Semantic Search System ; (they are conceptually named as) the Knowledge Acquisition, the Knowledge Representation and the Knowledge Utilization. Each of these three Layers are designed to interactively work together, so as to maximize the users' information needs. The Knowledge Acquisition Layer includes index and storage of Semantic Metadata from various source of web contents(eg : text, image, multimedia and so on). The Knowledge Representation Layer includes the ontology schema and instance, through the process of semantic search by ontology based query expansion. Finally, the Knowledge Utilization Layer includes the users to search query intuitively, and get its results without the users'knowledge of semantic web language or ontology. So far as the design and the realization of the semantic search site is concerned, the proposedsemantic search system will offer useful implications to the researchers and practitioners so as to improve the research level to the commercial use.

  • PDF

Orientation Analysis between UAV Video and Photos for 3D Measurement of Bridges (교량의 3차원 측정을 위한 UAV 비디오와 사진의 표정 분석)

  • Han, Dongyeob;Park, Jae Bong;Huh, Jungwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.451-456
    • /
    • 2018
  • UAVs (Unmanned Aerial Vehicles) are widely used for maintenance and monitoring of facilities. It is necessary to acquire a high-resolution image for evaluating the appearance state of the facility in safety inspection. In addition, it is essential to acquire the video data in order to acquire data over a wide area rapidly. In general, since video data does not include position information, it is difficult to analyze the actual size of the inspection object quantitatively. In this study, we evaluated the utilization of 3D point cloud data of bridges using a matching between video frames and reference photos. The drones were used to acquire video and photographs. And exterior orientations of the video frames were generated through feature point matching with reference photos. Experimental results showed that the accuracy of the video frame data is similar to that of the reference photos. Furthermore, the point cloud data generated by using video frames represented the shape and size of bridges with usable accuracy. If the stability of the product is verified through the matching test of various conditions in the future, it is expected that the video-based facility modeling and inspection will be effectively conducted.

Study on Identification Procedure for Unidentified Underwater Targets Using Small ROV Based on IDEF Method (소형 ROV를 이용한 IDEF0 기반의 수중 미확인 물체 식별절차에 관한 연구)

  • Baek, Hyuk;Jun, Bong-Huan;Yoon, Suk-Min;Noh, Myounggyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.289-299
    • /
    • 2019
  • Various sizes of ROVs are being utilized in offshore industrial, scientific, and military applications all around the world. Because of innovative developments in science and technology, image acquisition devices such as sonar devices and cameras have been reduced in size and their performance has been improved. Thus, we can expect better accuracy and higher resolution even in the case of exploration using a small ROV. The purpose of this paper is to prepare a standard procedure for the identification of unidentified hazardous materials found during the National Oceanographic Survey. In this paper, we propose an IDEF (Integrated DEFinition) method modeling technique to identify unidentified targets using a small ROV. In accordance with the proposed procedure, an ROV survey was carried out on target No.16 with a four-ton-class fishing boat as a support vessel on September 18th of 2018 in the sea near Daebu Island. Unidentified targets, which were not known by the multi-beam data obtained from the ship, could be identified as concrete pipes by analyzing the HD camera and high-resolution sonar images acquired by the ROV. The whole proposed procedure could be verified, and the survey with the small ROV required about 10 days to identify the target in one place.

Development of Smart Tote Bags with Marquage Techniques Using Optical Fiber and LEDs (광섬유와 LED를 활용한 마카쥬(marquage) 기법의 스마트 토트백 개발)

  • Park, Jinhee;Kim, Sang Jin;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.25 no.1
    • /
    • pp.51-64
    • /
    • 2021
  • The purpose of this study was to develop smart bags that combining fashion-specific trends and smart information technologies such as light-emitting diodes(LED) and optic fibers by grafting marquage techniques that have recently become popular as part of eco-fashion. We applied e-textiles by designing leather tote bags that could show off LED luminescence. A total of two tote bags, a white-colored peacock design and a black-colored paisley design, divided the LED's light-emitting method into two types, incremental lighting and random light-emission to suit each design, and the locations of the optical fibers were also reversed depending upon the design. The production of circuits for the LEDs and optical fibers was based on the design, and a flexible conductive fabric was laser-cut instead of wire line and attached to the circuit-line location. A separate connector was underwent three-dimensional(3D)-modeling and was connected to high-luminosity LEDs and optic fiber bundles. The optical fiber logo part expressed a subtle image using a white-colored LED, which did not offset the LED's sharp luminous effects, suggesting that using LEDs with fiber optics allowed for the expression of each in harmony without being heterogeneous. Overall, the LEDs and fiber optic fabric were well-harmonized in the fashion bag using marquage techniques, and there was no sense of it being a mechanical device. Also, the circuit part was made of conductive fabric, which is an e-textile product that feels the same as a thin, flexible fabric. The study confirmed that the bag was developed as a smart wearable product that could be used in everyday life.

Study on Management of Water Pipes in Buildings using Augmented Reality (증강현실을 이용한 건물의 수도관 관리 방안 연구)

  • Sang-Hyun Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1229-1238
    • /
    • 2023
  • Digital twin is a technology that creates a virtual space that replicates the real world and manages the real world efficiently by integrating the real and virtual spaces. The digital twin concept for water facilities is to effectively manage water pipes in the real world by implementing them in a virtual space and augmenting them to the interior space of the building. In the proposed method, the Unity 3D game engine is used to implement the application of digital twin technology in the interior of a building. The AR Foundation toolkit based on ARCore is used as the augmented reality technology for our Digital Twin implementation. In digital twin applications, it is essential to match the real and virtual worlds. In the proposed method, 2D image markers are used to match the real and virtual worlds. The Unity shader program is also applied to make the augmented objects visually realistic. The implementation results show that the proposed method is simple but accurate in placing water pipes in real space, and visually effective in representing water pipes on the wall.

3D Modeling of Cerebral Hemorrhage using Gradient Vector Flow (기울기 벡터 플로우를 이용한 뇌출혈의 3차원 모델링)

  • Seok-Yoon Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.231-237
    • /
    • 2024
  • Brain injury causes persistent disability in survivors, and epidural hematoma(EDH) and subdural hematoma (SDH) resulting from cerebral hemorrhage can be considered one of the major clinical diseases. In this study, we attempted to automatically segment and hematomas due to cerebral hemorrhage in three dimensions based on computed tomography(CT) images. An improved GVF(gradient vector flow) algorithm was implemented for automatic segmentation of hematoma. After calculating and repeating the gradient vector from the image, automatic segmentation was performed and a 3D model was created using the segmentation coordinates. As a result of the experiment, accurate segmentation of the boundaries of the hematoma was successful. The results were found to be good even in border areas and thin hematoma areas, and the intensity, direction of spread, and area of the hematoma could be known in various directions through the 3D model. It is believed that the planar information and 3D model of the cerebral hemorrhage area developed in this study can be used as auxiliary diagnostic data for medical staff.

Conversion of Camera Lens Distortions between Photogrammetry and Computer Vision (사진측량과 컴퓨터비전 간의 카메라 렌즈왜곡 변환)

  • Hong, Song Pyo;Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.267-277
    • /
    • 2019
  • Photogrammetry and computer vision are identical in determining the three-dimensional coordinates of images taken with a camera, but the two fields are not directly compatible with each other due to differences in camera lens distortion modeling methods and camera coordinate systems. In general, data processing of drone images is performed by bundle block adjustments using computer vision-based software, and then the plotting of the image is performed by photogrammetry-based software for mapping. In this case, we are faced with the problem of converting the model of camera lens distortions into the formula used in photogrammetry. Therefore, this study described the differences between the coordinate systems and lens distortion models used in photogrammetry and computer vision, and proposed a methodology for converting them. In order to verify the conversion formula of the camera lens distortion models, first, lens distortions were added to the virtual coordinates without lens distortions by using the computer vision-based lens distortion models. Then, the distortion coefficients were determined using photogrammetry-based lens distortion models, and the lens distortions were removed from the photo coordinates and compared with the virtual coordinates without the original distortions. The results showed that the root mean square distance was good within 0.5 pixels. In addition, epipolar images were generated to determine the accuracy by applying lens distortion coefficients for photogrammetry. The calculated root mean square error of y-parallax was found to be within 0.3 pixels.