• Title/Summary/Keyword: Image-based localization

Search Result 258, Processing Time 0.038 seconds

Generation of Feature Map for Improving Localization of Mobile Robot based on Stereo Camera (스테레오 카메라 기반 모바일 로봇의 위치 추정 향상을 위한 특징맵 생성)

  • Kim, Eun-Kyeong;Kim, Sung-Shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2020
  • This paper proposes the method for improving the localization accuracy of the mobile robot based on the stereo camera. To restore the position information from stereo images obtained by the stereo camera, the corresponding point which corresponds to one pixel on the left image should be found on the right image. For this, there is the general method to search for corresponding point by calculating the similarity of pixel with pixels on the epipolar line. However, there are some disadvantages because all pixels on the epipolar line should be calculated and the similarity is calculated by only pixel value like RGB color space. To make up for this weak point, this paper implements the method to search for the corresponding point simply by calculating the gap of x-coordinate when the feature points, which are extracted by feature extraction and matched by feature matching method, are a pair and located on the same y-coordinate on the left/right image. In addition, the proposed method tries to preserve the number of feature points as much as possible by finding the corresponding points through the conventional algorithm in case of unmatched features. Because the number of the feature points has effect on the accuracy of the localization. The position of the mobile robot is compensated based on 3-D coordinates of the features which are restored by the feature points and corresponding points. As experimental results, by the proposed method, the number of the feature points are increased for compensating the position and the position of the mobile robot can be compensated more than only feature extraction.

Vision-based Mobile Robot Localization and Mapping using fisheye Lens (어안렌즈를 이용한 비전 기반의 이동 로봇 위치 추정 및 매핑)

  • Lee Jong-Shill;Min Hong-Ki;Hong Seung-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.256-262
    • /
    • 2004
  • A key component of an autonomous mobile robot is to localize itself and build a map of the environment simultaneously. In this paper, we propose a vision-based localization and mapping algorithm of mobile robot using fisheye lens. To acquire high-level features with scale invariance, a camera with fisheye lens facing toward to ceiling is attached to the robot. These features are used in mP building and localization. As a preprocessing, input image from fisheye lens is calibrated to remove radial distortion and then labeling and convex hull techniques are used to segment ceiling and wall region for the calibrated image. At the initial map building process, features we calculated for each segmented region and stored in map database. Features are continuously calculated for sequential input images and matched to the map. n some features are not matched, those features are added to the map. This map matching and updating process is continued until map building process is finished, Localization is used in map building process and searching the location of the robot on the map. The calculated features at the position of the robot are matched to the existing map to estimate the real position of the robot, and map building database is updated at the same time. By the proposed method, the elapsed time for map building is within 2 minutes for 50㎡ region, the positioning accuracy is ±13cm and the error about the positioning angle of the robot is ±3 degree for localization.

  • PDF

Simultaneous Localization & Map-building of Mobile Robot in the Outdoor Environments by Vision-based Compressed Extended Kalman Filter (Compressed Extended Kalman 필터를 이용한 야외 환경에서 주행 로봇의 위치 추정 및 지도 작성)

  • Yoon Suk-June;Choi Hyun-Do;Park Sung-Kee;Kim Soo-Hyun;Kwak Yoon-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.585-593
    • /
    • 2006
  • In this paper, we propose a vision-based simultaneous localization and map-building (SLAM) algorithm. SLAM problem asks the location of mobile robot in the unknown environments. Therefore, this problem is one of the most important processes of mobile robots in the outdoor operation. To solve this problem, Extended Kalman filter (EKF) is widely used. However, this filter requires computational power (${\sim}O(N)$, N is the dimension of state vector). To reduce the computational complexity, we applied compressed extended Kalman filter (CEKF) to stereo image sequence. Moreover, because the mobile robots operate in the outdoor environments, we should estimate full d.o.f.s of mobile robot. To evaluate proposed SLAM algorithm, we performed the outdoor experiments. The experiment was performed by using new wheeled type mobile robot, Robhaz-6W. The performance results of CEKF SLAM are presented.

A High-Quality Image Authentication Scheme for AMBTC-compressed Images

  • Lin, Chia-Chen;Huang, Yuehong;Tai, Wei-Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4588-4603
    • /
    • 2014
  • In this paper, we present a high-quality image authentication scheme based on absolute moment block truncation coding. In the proposed scheme, we use the parity of the bitmap (BM) to generate the authentication code for each compressed image block. Data hiding is used to authenticate whether the content has been altered or not. For image authentication, we embed the authentication code to quantization levels of each image block compressed by absolute moment block truncation coding (AMBTC) which will be altered when the host image is manipulated. The embedding position is generated by a pseudo-random number generator for security concerned. Besides, to improve the detection ability we use a hierarchical structure to ensure the accuracy of tamper localization. A watermarked image can be precisely inspected whether it has been tampered intentionally or incautiously by checking the extracted watermark. Experimental results demonstrated that the proposed scheme achieved high-quality embedded images and good detection accuracy, with stable performance and high expansibility. Performance comparisons with other block-based data hiding schemes are provided to demonstrate the superiority of the proposed scheme.

Study on 2.5D Map Building and Map Merging Method for Rescue Robot Navigation (재난 구조용 로봇의 자율주행을 위한 지도작성 및 2.5D 지도정합에 관한 연구)

  • Kim, Su Ho;Shim, Jae Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.114-130
    • /
    • 2022
  • The purpose of this study was to investigate the possibility of increasing the efficiency of disaster relief rescue operations through collaboration among multiple aerial and ground robots. The robots create 2.5D maps, which are merged into a 2.5D map. The 2.5D map can be handled by a low-specification controller of an aerial robot and is suitable for ground robot navigation. For localization of the aerial robot, a six-degree-of-freedom pose recognition method using VIO was applied. To build a 2.5D map, an image conversion technique was employed. In addition, to merge 2.5D maps, an image similarity calculation technique based on the features on a wall was used. Localization and navigation were performed using a ground robot to evaluate the reliability of the 2.5D map. As a result, it was possible to estimate the location with an average and standard error of less than 0.3 m for the place where the 2.5D map was normally built, and there were only four collisions for the obstacle with the smallest volume. Based on the 2.5D map building and map merging system for the aerial robot used in this study, it is expected that disaster response work efficiency can be improved by combining the advantages of heterogeneous robots.

Development of A Digital Image Signature Based-on MPEG-7 Descriptors (MPEG-7 기반의 Digital Image Signature 개발)

  • Oh, Weon-Geun;Choi, Kyoung-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.505-508
    • /
    • 2011
  • 본 논문에서는 MPEG-7 비주얼 디스크립터를 기반으로 Digital Image의 효과적인 검색이 가능한 시스템의 개발하였다. MPEG-7에 포함되어 있는 비주얼 디스크립터 툴은 컬러, 텍스처, shape, motion, localization, 얼굴 인식 등을 포함한다. 이들 MPEG-7에서 제공하는 비주얼 디스크립터를 그대로 이용하여 Digital Image의 검색 시스템을 구현하기에는 시스템이 불필요하게 커질 수 있으며 Digital Image의 검색 성능이 그다지 높지 않다는 문제점이 발생한다. 구체적으로는 모든 디스크립터를 이용하여 데이터베이스에 존재하는 모든 Digital Imag에 대한 검색을 수행하기에는 많은 처리시간이 요구된다는 것과 어떠한 디스크립터를 이용해야 정확한 검색이 이루어질지 알 수 없기 때문이다. 이를 위해 본 논문에서는, MPEG-7 비주얼 디스크립터의 특성을 저작권위원회에서 제공받은 데이터베이스를 이용하여 분석하고 이들 디스크립터의 효과적인 결합 기술을 개발하였다. 기존의 디스크립터 결합 방식은 각각의 디스크립터에 동일한 가중치를 부여하고 검색을 수행하는 방식이었으나 본 논문에서는 정보이론을 기반으로 디스크립터의 가중치를 자동으로 부여하는 방식으로 검색 시스템을 구성하였다. 개발된 시스템은 기존의 동일한 가중치를 부여한 시스템에 비해서 데이터베이스에 대한 각 디스크립터의 특성을 반영하여 가중치를 결정하도록 구성하였다.

  • PDF

Human Iris Recognition using Wavelet Transform and Neural Network

  • Cho, Seong-Won;Kim, Jae-Min;Won, Jung-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.178-186
    • /
    • 2003
  • Recently, many researchers have been interested in biometric systems such as fingerprint, handwriting, key-stroke patterns and human iris. From the viewpoint of reliability and robustness, iris recognition is the most attractive biometric system. Moreover, the iris recognition system is a comfortable biometric system, since the video image of an eye can be taken at a distance. In this paper, we discuss human iris recognition, which is based on accurate iris localization, robust feature extraction, and Neural Network classification. The iris region is accurately localized in the eye image using a multiresolution active snake model. For the feature representation, the localized iris image is decomposed using wavelet transform based on dyadic Haar wavelet. Experimental results show the usefulness of wavelet transform in comparison to conventional Gabor transform. In addition, we present a new method for setting initial weight vectors in competitive learning. The proposed initialization method yields better accuracy than the conventional method.

Research to improve the performance of self localization of mobile robot utilizing video information of CCTV (CCTV 영상 정보를 활용한 이동 로봇의 자기 위치 추정 성능 향상을 위한 연구)

  • Park, Jong-Ho;Jeon, Young-Pil;Ryu, Ji-Hyoung;Yu, Dong-Hyun;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6420-6426
    • /
    • 2013
  • The indoor areas for the commercial use of automatic monitoring systems of mobile robot localization improves the cognitive abilities and the needs of the environment with this emerging and existing mobile robot localization, and object recognition methods commonly around its great sensor are leveraged. On the other hand, there is a difficulty with a problem-solving self-location estimation in indoor mobile robots using only the sensors of the robot. Therefore, in this paper, a self-position estimation method for an enhanced and effective mobile robot is proposed using a marker and CCTV video that is already installed in the building. In particular, after recognizing a square mobile robot and the object from the input image, and the vertices were confirmed, the feature points of the marker were found, and marker recognition was then performed. First, a self-position estimation of the mobile robot was performed according to the relationship of the image marker and a coordinate transformation was performed. In particular, the estimation was converted to an absolute coordinate value based on CCTV information, such as robots and obstacles. The study results can be used to make a convenient self-position estimation of the robot in the indoor areas to verify the self-position estimation method of the mobile robot. In addition, experimental operation was performed based on the actual robot system.

Photorealistic Real-Time Dense 3D Mesh Mapping for AUV (자율 수중 로봇을 위한 사실적인 실시간 고밀도 3차원 Mesh 지도 작성)

  • Jungwoo Lee;Younggun Cho
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.188-195
    • /
    • 2024
  • This paper proposes a photorealistic real-time dense 3D mapping system that utilizes a neural network-based image enhancement method and mesh-based map representation. Due to the characteristics of the underwater environment, where problems such as hazing and low contrast occur, it is hard to apply conventional simultaneous localization and mapping (SLAM) methods. At the same time, the behavior of Autonomous Underwater Vehicle (AUV) is computationally constrained. In this paper, we utilize a neural network-based image enhancement method to improve pose estimation and mapping quality and apply a sliding window-based mesh expansion method to enable lightweight, fast, and photorealistic mapping. To validate our results, we utilize real-world and indoor synthetic datasets. We performed qualitative validation with the real-world dataset and quantitative validation by modeling images from the indoor synthetic dataset as underwater scenes.

LBP and DWT Based Fragile Watermarking for Image Authentication

  • Wang, Chengyou;Zhang, Heng;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.666-679
    • /
    • 2018
  • The discrete wavelet transform (DWT) has good multi-resolution decomposition characteristic and its low frequency component contains the basic information of an image. Based on this, a fragile watermarking using the local binary pattern (LBP) and DWT is proposed for image authentication. In this method, the LBP pattern of low frequency wavelet coefficients is adopted as a feature watermark, and it is inserted into the least significant bit (LSB) of the maximum pixel value in each block of host image. To guarantee the safety of the proposed algorithm, the logistic map is applied to encrypt the watermark. In addition, the locations of the maximum pixel values are stored in advance, which will be used to extract watermark on the receiving side. Due to the use of DWT, the watermarked image generated by the proposed scheme has high visual quality. Compared with other state-of-the-art watermarking methods, experimental results manifest that the proposed algorithm not only has lower watermark payloads, but also achieves good performance in tamper identification and localization for various attacks.