• Title/Summary/Keyword: Image-based AI

Search Result 383, Processing Time 0.029 seconds

Technical Trends in Hyperscale Artificial Intelligence Processors (초거대 인공지능 프로세서 반도체 기술 개발 동향)

  • W. Jeon;C.G. Lyuh
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.5
    • /
    • pp.1-11
    • /
    • 2023
  • The emergence of generative hyperscale artificial intelligence (AI) has enabled new services, such as image-generating AI and conversational AI based on large language models. Such services likely lead to the influx of numerous users, who cannot be handled using conventional AI models. Furthermore, the exponential increase in training data, computations, and high user demand of AI models has led to intensive hardware resource consumption, highlighting the need to develop domain-specific semiconductors for hyperscale AI. In this technical report, we describe development trends in technologies for hyperscale AI processors pursued by domestic and foreign semiconductor companies, such as NVIDIA, Graphcore, Tesla, Google, Meta, SAPEON, FuriosaAI, and Rebellions.

MRI Image Super Resolution through Filter Learning Based on Surrounding Gradient Information in 3D Space (3D 공간상에서의 주변 기울기 정보를 기반에 둔 필터 학습을 통한 MRI 영상 초해상화)

  • Park, Seongsu;Kim, Yunsoo;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.178-185
    • /
    • 2021
  • Three-dimensional high-resolution magnetic resonance imaging (MRI) provides fine-level anatomical information for disease diagnosis. However, there is a limitation in obtaining high resolution due to the long scan time for wide spatial coverage. Therefore, in order to obtain a clear high-resolution(HR) image in a wide spatial coverage, a super-resolution technology that converts a low-resolution(LR) MRI image into a high-resolution is required. In this paper, we propose a super-resolution technique through filter learning based on information on the surrounding gradient information in 3D space from 3D MRI images. In the learning step, the gradient features of each voxel are computed through eigen-decomposition from 3D patch. Based on these features, we get the learned filters that minimize the difference of intensity between pairs of LR and HR images for similar features. In test step, the gradient feature of the patch is obtained for each voxel, and the filter is applied by selecting a filter corresponding to the feature closest to it. As a result of learning 100 T1 brain MRI images of HCP which is publicly opened, we showed that the performance improved by up to about 11% compared to the traditional interpolation method.

Estimation of Displacements Using Artificial Intelligence Considering Spatial Correlation of Structural Shape (구조형상 공간상관을 고려한 인공지능 기반 변위 추정)

  • Seung-Hun Shin;Ji-Young Kim;Jong-Yeol Woo;Dae-Gun Kim;Tae-Seok Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • An artificial intelligence (AI) method based on image deep learning is proposed to predict the entire displacement shape of a structure using the feature of partial displacements. The performance of the method was investigated through a structural test of a steel frame. An image-to-image regression (I2IR) training method was developed based on the U-Net layer for image recognition. In the I2IR method, the U-Net is modified to generate images of entire displacement shapes when images of partial displacement shapes of structures are input to the AI network. Furthermore, the training of displacements combined with the location feature was developed so that nodal displacement values with corresponding nodal coordinates could be used in AI training. The proposed training methods can consider correlations between nodal displacements in 3D space, and the accuracy of displacement predictions is improved compared with artificial neural network training methods. Displacements of the steel frame were predicted during the structural tests using the proposed methods and compared with 3D scanning data of displacement shapes. The results show that the proposed AI prediction properly follows the measured displacements using 3D scanning.

Artificial Intelligence Based Medical Imaging: An Overview (AI 의료영상 분석의 개요 및 연구 현황에 대한 고찰)

  • Hong, Jun-Yong;Park, Sang Hyun;Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.195-208
    • /
    • 2020
  • Artificial intelligence(AI) is a field of computer science that is defined as allowing computers to imitate human intellectual behavior, even though AI's performance is to imitate humans. It is grafted across software-based fields with the advantages of high accuracy and speed of processing that surpasses humans. Indeed, the AI based technology has become a key technology in the medical field that will lead the development of medical image analysis. Therefore, this article introduces and discusses the concept of deep learning-based medical imaging analysis using the principle of algorithms for convolutional neural network(CNN) and back propagation. The research cases application of the AI based medical imaging analysis is used to classify the various disease(such as chest disease, coronary artery disease, and cerebrovascular disease), and the performance estimation comparing between AI based medical imaging classifier and human experts.

Advanced Big Data Analysis, Artificial Intelligence & Communication Systems

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Recently, big data and artificial intelligence (AI) based on communication systems have become one of the hottest issues in the technology sector, and methods of analyzing big data using AI approaches are now considered essential. This paper presents diverse paradigms to subjects which deal with diverse research areas, such as image segmentation, fingerprint matching, human tracking techniques, malware distribution networks, methods of intrusion detection, digital image watermarking, wireless sensor networks, probabilistic neural networks, query processing of encrypted data, the semantic web, decision-making, software engineering, and so on.

Image-Based Skin Diagnosis Using AI Technology Combine with Survey System for Review of Integrated Skin Diagnosis Function (이미지 기반 AI 피부 진단 기술과 문진을 결합한 통합 피부진단 기능에 관한 고찰)

  • Park, Hakgwon;Lim, Young-Hwan;Park, Hyeokgon;Hwang, Joongwon;Lee, Sangran;Cho, Eunsang;Lin, Bin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.463-468
    • /
    • 2022
  • The prolonged of the Post Corona made many industry's paradigm. It's become very important In the industries products that customers directly touch and use. To cope with this situation, The Cosmetics industry has recently introduced various untact services. many customers would like to try these new services. Typically, online survey services recommend personalized products. but these services reached its limit later. This paper research how to recommend products and define skine type with AI Image diagnosis module combine with legacy survey system.

Study on OCR Enhancement of Homomorphic Filtering with Adaptive Gamma Value

  • Heeyeon Jo;Jeongwoo Lee;Hongrae Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2024
  • AI-OCR (Artificial Intelligence Optical Character Recognition) combines OCR technology with Artificial Intelligence to overcome limitations that required human intervention. To enhance the performance of AI-OCR, training on diverse data sets is essential. However, the recognition rate declines when image colors have similar brightness levels. To solve this issue, this study employs Homomorphic filtering as a preprocessing step to clearly differentiate color levels, thereby increasing text recognition rates. While Homomorphic filtering is ideal for text extraction because of its ability to adjust the high and low frequency components of an image separately using a gamma value, it has the downside of requiring manual adjustments to the gamma value. This research proposes a range for gamma threshold values based on tests involving image contrast, brightness, and entropy. Experimental results using the proposed range of gamma values in Homomorphic filtering suggest a high likelihood for effective AI-OCR performance.

Implementation of an alarm system with AI image processing to detect whether a helmet is worn or not and a fall accident (헬멧 착용 여부 및 쓰러짐 사고 감지를 위한 AI 영상처리와 알람 시스템의 구현)

  • Yong-Hwa Jo;Hyuek-Jae Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2022
  • This paper presents an implementation of detecting whether a helmet is worn and there is a fall accident through individual image analysis in real-time from extracting the image objects of several workers active in the industrial field. In order to detect image objects of workers, YOLO, a deep learning-based computer vision model, was used, and for whether a helmet is worn or not, the extracted images with 5,000 different helmet learning data images were applied. For whether a fall accident occurred, the position of the head was checked using the Pose real-time body tracking algorithm of Mediapipe, and the movement speed was calculated to determine whether the person fell. In addition, to give reliability to the result of a falling accident, a method to infer the posture of an object by obtaining the size of YOLO's bounding box was proposed and implemented. Finally, Telegram API Bot and Firebase DB server were implemented for notification service to administrators.

Quantitative evaluation of transfer learning for image recognition AI of robot vision (로봇 비전의 영상 인식 AI를 위한 전이학습 정량 평가)

  • Jae-Hak Jeong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.909-914
    • /
    • 2024
  • This study suggests a quantitative evaluation of transfer learning, which is widely used in various AI fields, including image recognition for robot vision. Quantitative and qualitative analyses of results applying transfer learning are presented, but transfer learning itself is not discussed. Therefore, this study proposes a quantitative evaluation of transfer learning itself based on MNIST, a handwritten digit database. For the reference network, the change in recognition accuracy according to the depth of the transfer learning frozen layer and the ratio of transfer learning data and pre-training data is tracked. It is observed that when freezing up to the first layer and the ratio of transfer learning data is more than 3%, the recognition accuracy of more than 90% can be stably maintained. The transfer learning quantitative evaluation method of this study can be used to implement transfer learning optimized according to the network structure and type of data in the future, and will expand the scope of the use of robot vision and image analysis AI in various environments.

Standardization Trends on Safety and Trustworthiness Technology for Advanced AI (첨단 인공지능 안전 및 신뢰성 기술 표준 동향)

  • J.H. Jeon
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.5
    • /
    • pp.108-122
    • /
    • 2024
  • Artificial Intelligence (AI) has rapidly evolved over the past decade and has advanced in areas such as language comprehension, image and video recognition, programming, and scientific reasoning. Recent AI technologies based on large language models and foundation models are approaching or surpassing artificial general intelligence. These systems demonstrate superior performance in complex problem-solving, natural language processing, and multidomain tasks, and can potentially transform fields such as science, industry, healthcare, and education. However, these advancements have raised concerns regarding the safety and trustworthiness of advanced AI, including risks related to uncontrollability, ethical conflicts, long-term socioeconomic impacts, and safety assurance. Efforts are being expended to develop internationally agreed-upon standards to ensure the safety and reliability of AI. This study analyzes international trends in safety and trustworthiness standardization for advanced AI, identifies key areas for standardization, proposes future directions and strategies, and draws policy implications. The goal is to support the safe and trustworthy development of advanced AI and enhance international competitiveness through effective standardization.