• Title/Summary/Keyword: Image-based AI

Search Result 383, Processing Time 0.027 seconds

Analysis of Trends of Medical Image Processing based on Deep Learning

  • Seokjin Im
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.283-289
    • /
    • 2023
  • AI is bringing about drastic changes not only in the aspect of technologies but also in society and culture. Medical AI based on deep learning have developed rapidly. Especially, the field of medical image analysis has been proven that AI can identify the characteristics of medical images more accurately and quickly than clinicians. Evaluating the latest results of the AI-based medical image processing is important for the implication for the development direction of medical AI. In this paper, we analyze and evaluate the latest trends in AI-based medical image analysis, which is showing great achievements in the field of medical AI in the healthcare industry. We analyze deep learning models for medical image analysis and AI-based medical image segmentation for quantitative analysis. Also, we evaluate the future development direction in terms of marketability as well as the size and characteristics of the medical AI market and the restrictions to market growth. For evaluating the latest trend in the deep learning-based medical image processing, we analyze the latest research results on the deep learning-based medical image processing and data of medical AI market. The analyzed trends provide the overall views and implication for the developing deep learning in the medical fields.

Proposal for AI Video Interview Using Image Data Analysis

  • Park, Jong-Youel;Ko, Chang-Bae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.212-218
    • /
    • 2022
  • In this paper, the necessity of AI video interview arises when conducting an interview for acquisition of excellent talent in a non-face-to-face situation due to similar situations such as Covid-19. As a matter to be supplemented in general AI interviews, it is difficult to evaluate the reliability and qualitative factors. In addition, the AI interview is conducted not in a two-way Q&A, rather in a one-sided Q&A process. This paper intends to fuse the advantages of existing AI interviews and video interviews. When conducting an interview using AI image analysis technology, it supplements subjective information that evaluates interview management and provides quantitative analysis data and HR expert data. In this paper, image-based multi-modal AI image analysis technology, bioanalysis-based HR analysis technology, and web RTC-based P2P image communication technology are applied. The goal of applying this technology is to propose a method in which biological analysis results (gaze, posture, voice, gesture, landmark) and HR information (opinions or features based on user propensity) can be processed on a single screen to select the right person for the hire.

Agricultural Applicability of AI based Image Generation (AI 기반 이미지 생성 기술의 농업 적용 가능성)

  • Seungri Yoon;Yeyeong Lee;Eunkyu Jung;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.33 no.2
    • /
    • pp.120-128
    • /
    • 2024
  • Since ChatGPT was released in 2022, the generative artificial intelligence (AI) industry has seen massive growth and is expected to bring significant innovations to cognitive tasks. AI-based image generation, in particular, is leading major changes in the digital world. This study investigates the technical foundations of Midjourney, Stable Diffusion, and Firefly-three notable AI image generation tools-and compares their effectiveness by examining the images they produce. The results show that these AI tools can generate realistic images of tomatoes, strawberries, paprikas, and cucumbers, typical crops grown in greenhouse. Especially, Firefly stood out for its ability to produce very realistic images of greenhouse-grown crops. However, all tools struggled to fully capture the environmental context of greenhouses where these crops grow. The process of refining prompts and using reference images has proven effective in accurately generating images of strawberry fruits and their cultivation systems. In the case of generating cucumber images, the AI tools produced images very close to real ones, with no significant differences found in their evaluation scores. This study demonstrates how AI-based image generation technology can be applied in agriculture, suggesting a bright future for its use in this field.

Transforming Text into Video: A Proposed Methodology for Video Production Using the VQGAN-CLIP Image Generative AI Model

  • SukChang Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.225-230
    • /
    • 2023
  • With the development of AI technology, there is a growing discussion about Text-to-Image Generative AI. We presented a Generative AI video production method and delineated a methodology for the production of personalized AI-generated videos with the objective of broadening the landscape of the video domain. And we meticulously examined the procedural steps involved in AI-driven video production and directly implemented a video creation approach utilizing the VQGAN-CLIP model. The outcomes produced by the VQGAN-CLIP model exhibited a relatively moderate resolution and frame rate, and predominantly manifested as abstract images. Such characteristics indicated potential applicability in OTT-based video content or the realm of visual arts. It is anticipated that AI-driven video production techniques will see heightened utilization in forthcoming endeavors.

Color & Texture Attribute Classification System of Fashion Item Image for Standardizing Learning Data in Fashion AI (패션 AI의 학습 데이터 표준화를 위한 패션 아이템 이미지의 색채와 소재 속성 분류 체계)

  • Park, Nanghee;Choi, Yoonmi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.2
    • /
    • pp.354-368
    • /
    • 2020
  • Accurate and versatile image data-sets are essential for fashion AI research and AI-based fashion businesses based on a systematic attribute classification system. This study constructs a color and texture attribute hierarchical classification system by collecting fashion item images and analyzing the metadata of fashion items described by consumers. Essential dimensions to explain color and texture attributes were extracted; in addition, attribute values for each dimension were constructed based on metadata and previous studies. This hierarchical classification system satisfies consistency, exclusiveness, inclusiveness, and flexibility. The image tagging to confirm the usefulness of the proposed classification system indicated that the contents of attributes of the same image differ depending on the annotator that require a clear standard for distinguishing differences between the properties. This classification system will improve the reliability of the training data for machine learning, by providing standardized criteria for tasks such as tagging and annotating of fashion items.

A Study of 3D Digital Fashion Design Using Kazmir Malevich's Formative Elements as AI Prompt (카지미르 말레비치의 조형적 요소를 AI 프롬프트로 활용한 3D 디지털 패션디자인 연구)

  • Jooyoung Lee
    • Journal of Fashion Business
    • /
    • v.28 no.3
    • /
    • pp.122-139
    • /
    • 2024
  • Image-generated AI is rapidly emerging as a powerful tool to augment human creativity and transform the art and design process through deep learning capabilities. The purpose of this study was to propose and demonstrate the feasibility of a new design development method that combined traditional design methods and technology by constructing image-generated AI prompts based on artists' formative elements. The study methodology consisted of analyzing Kazmir Malevich's theoretical considerations and applying them to AI prompts for design, print pattern development, and 3D digital design. This study found that the suprematist works of Kazmir Malevich were suitable as design and print pattern prompts due to their clear geometric shapes, colors, and spatial arrangement. The AI-prompted designs and print patterns produced diverse results quickly and enabled an efficient design process compared to traditional methods, although additional refinement was required to perfect the details. The AI-generated designs were successfully produced as 3D garments, thereby demonstrating that AI technology could significantly contribute to fashion design through its integration with artistic principles. This study has academic significance in that it proposes a prompt composition method applicable to fashion design by combining AI and artistic elements. It also has industrial significance in that it contributes to design innovation and the implementation of creative ideas by presenting an AI-based design process that can be practically applied.

Development of a Shoe Recommendation Model for Matching Outfits Using Generative Artificial Intelligence (생성형 인공지능을 활용한 신발 추천 모델 개발)

  • Jun Woo CHOI
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.7-10
    • /
    • 2023
  • This study proposes an AI-based shoe recommendation model based on user clothing image data to solve the problem of the global fashion industry, which is worsening due to factors such as the economic downturn. Shoes are an important part of modern fashion, and this research aims to improve user satisfaction and contribute to economic growth through a generative AI-based shoe recommendation service. By utilizing generative AI in the personalized consumer market, we show the feasibility, efficiency, and improvements through an accessible web-based implementation. In conclusion, this study provides insights to help fulfill consumer needs in the ever-changing fashion market by implementing a generative AI-based shoe recommendation model.

A Design and Implementation of Generative AI-based Advertising Image Production Service Application

  • Chang Hee Ok;Hyun Sung Lee;Min Soo Jeong;Yu Jin Jeong;Ji An Choi;Young-Bok Cho;Won Joo Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.31-38
    • /
    • 2024
  • In this paper, we propose an ASAP(AI-driven Service for Advertisement Production) application that provides a generative AI-based automatic advertising image production service. This application utilizes GPT-3.5 Turbo Instruct to generate suitable background mood and promotional copy based on user-entered keywords. It utilizes OpenAI's DALL·E 3 model and Stability AI's SDXL model to generate background images and text images based on these inputs. Furthermore, OCR technology is employed to improve the accuracy of text images, and all generated outputs are synthesized to create the final advertisement. Additionally, using the PILLOW and OpenCV libraries, text boxes are implemented to insert details such as phone numbers and business hours at the edges of promotional materials. This application offers small business owners who face difficulties in advertising production a simple and cost-effective solution.

A Realization of FPGA-based Image Recognition System (FPGA기반 영상인식 시스템 구현)

  • Young Yun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.349-350
    • /
    • 2022
  • Recently, AI (Artificial Intelligence) has been applied to various technologies such as automatic driving, robot and smart communication. Currently, AI system is developed by software-based method using tensor flow, and GPU (Graphic Processing Unit) is employed for processing unit. In this work, we developed an FPGA-based (Field Programmable Gate Array) AI system , and report on image recognition system to realize the AI system.

  • PDF

Design of Driving methods of lower power consumption in Plasma AI(plasma adaptive intensifier) driving method (Plasma AI(plasma adaptive intensifier)구동의 전력 소모 개선을 위한 구동방식 설계)

  • Kim, Jun-Hyeong;O, Sun-Taek;Lee, Dong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.844-847
    • /
    • 2003
  • Display devices are becoming increasingly important as an interface between humans and machines in the growing information society. In display devices, PDP (Plasma Display Panel) has many advantages in that it has wide screen, wide viewing angle and is light weight, thin. In PDP driving method, if the brightness of input image is high, applying the fixed sustain pulse to the PDP panel will raise the PDP power consumption and may damages the PDP panel. To overcome these problems, the Plasma AI driving method was introduced by the Matshushita co. in Japan. The Plasma AI driving module calculates the peak value and average value of 1 frame image and adjusts the gradation and sustain pulses for 1 frame sustain. In this paper, the proposed PDP driving module is based on the Plasma AI driving module. The proposed driving module calculates peak value and average value, and the brightness distribution of 1 frame image. Using brightness distribution, the proposed driving module divides 1 frame input image into 15 image patterns. For each image pattern, minimum sustain pulses and sub-frames are used for the brightness of 1 frame image and the sustain weight for 64, 128, 192 gradation is proposed. Therefore, the sustain power consumption can be reduced.

  • PDF