• Title/Summary/Keyword: Image super-resolution

Search Result 243, Processing Time 0.027 seconds

Super-resolution in Music Score Images by Instance Normalization

  • Tran, Minh-Trieu;Lee, Guee-Sang
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.64-71
    • /
    • 2019
  • The performance of an OMR (Optical Music Recognition) system is usually determined by the characterizing features of the input music score images. Low resolution is one of the main factors leading to degraded image quality. In this paper, we handle the low-resolution problem using the super-resolution technique. We propose the use of a deep neural network with instance normalization to improve the quality of music score images. We apply instance normalization which has proven to be beneficial in single image enhancement. It works better than batch normalization, which shows the effectiveness of shifting the mean and variance of deep features at the instance level. The proposed method provides an end-to-end mapping technique between the high and low-resolution images respectively. New images are then created, in which the resolution is four times higher than the resolution of the original images. Our model has been evaluated with the dataset "DeepScores" and shows that it outperforms other existing methods.

Raw Sensor Single Image Super Resolution Using Color Corrector-Attention Network (코렉터 어텐션 네트워크을 이용한 로우 센서 영상 초해상화 기법)

  • Paul Shin;Teaha Kim;Yeejin Lee
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.90-99
    • /
    • 2023
  • In this paper, we propose a super resolution network for raw sensor image which data size is lower comparatively to RGB image. But the actual capabilities of raw image super resolution depends on color correction because its absent of camera post processing that leads to unintended result having different white balance, saturation, etc. Thus, we introduce novel color corrector attention network by adopting the idea of precedent raw super resolution research, and tune to the our faced problem from data specification. The result is not superior to former researches but shows decent output on certain performance matrix. In the same time, we encounter new challenging problem of unexpected shadowing artifact around image objects that cause performance declination despite its good result overall. This problem remains a task to be solved in the future research.

Low-Rank Representation-Based Image Super-Resolution Reconstruction with Edge-Preserving

  • Gao, Rui;Cheng, Deqiang;Yao, Jie;Chen, Liangliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3745-3761
    • /
    • 2020
  • Low-rank representation methods already achieve many applications in the image reconstruction. However, for high-gradient image patches with rich texture details and strong edge information, it is difficult to find sufficient similar patches. Existing low-rank representation methods usually destroy image critical details and fail to preserve edge structure. In order to promote the performance, a new representation-based image super-resolution reconstruction method is proposed, which combines gradient domain guided image filter with the structure-constrained low-rank representation so as to enhance image details as well as reveal the intrinsic structure of an input image. Firstly, we extract the gradient domain guided filter of each atom in high resolution dictionary in order to acquire high-frequency prior information. Secondly, this prior information is taken as a structure constraint and introduced into the low-rank representation framework to develop a new model so as to maintain the edges of reconstructed image. Thirdly, the approximate optimal solution of the model is solved through alternating direction method of multipliers. After that, experiments are performed and results show that the proposed algorithm has higher performances than conventional state-of-the-art algorithms in both quantitative and qualitative aspects.

Super-Resolution Image Reconstruction Using Multi-View Cameras (다시점 카메라를 이용한 초고해상도 영상 복원)

  • Ahn, Jae-Kyun;Lee, Jun-Tae;Kim, Chang-Su
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.463-473
    • /
    • 2013
  • In this paper, we propose a super-resolution (SR) image reconstruction algorithm using multi-view images. We acquire 25 images from multi-view cameras, which consist of a $5{\times}5$ array of cameras, and then reconstruct an SR image of the center image using a low resolution (LR) input image and the other 24 LR reference images. First, we estimate disparity maps from the input image to the 24 reference images, respectively. Then, we interpolate a SR image by employing the LR image and matching points in the reference images. Finally, we refine the SR image using an iterative regularization scheme. Experimental results demonstrate that the proposed algorithm provides higher quality SR images than conventional algorithms.

Texture-Spatial Separation based Feature Distillation Network for Single Image Super Resolution (단일 영상 초해상도를 위한 질감-공간 분리 기반의 특징 분류 네트워크)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, I proposes a method for performing single image super resolution by separating texture-spatial domains and then classifying features based on detailed information. In CNN (Convolutional Neural Network) based super resolution, the complex procedures and generation of redundant feature information in feature estimation process for enhancing details can lead to quality degradation in super resolution. The proposed method reduced procedural complexity and minimizes generation of redundant feature information by splitting input image into two channels: texture and spatial. In texture channel, a feature refinement process with step-wise skip connections is applied for detail restoration, while in spatial channel, a method is introduced to preserve the structural features of the image. Experimental results using proposed method demonstrate improved performance in terms of PSNR and SSIM evaluations compared to existing super resolution methods, confirmed the enhancement in quality.

Untact Face Recognition System Based on Super-resolution in Low-Resolution Images (초고해상도 기반 비대면 저해상도 영상의 얼굴 인식 시스템)

  • Bae, Hyeon Bin;Kwon, Oh Seol
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.412-420
    • /
    • 2020
  • This paper proposes a performance-improving face recognition system based on a super resolution method for low-resolution images. The conventional face recognition algorithm has a rapidly decreased accuracy rate due to small image resolution by a distance. To solve the previously mentioned problem, this paper generates a super resolution images based o deep learning method. The proposed method improved feature information from low-resolution images using a super resolution method and also applied face recognition using a feature extraction and an classifier. In experiments, the proposed method improves the face recognition rate when compared to conventional methods.

LEARNING-BASED SUPER-RESOLUTION USING A MULTI-RESOLUTION WAVELET APPROACH

  • Kim, Chang-Hyun;Choi, Kyu-Ha;Hwang, Kyu-Young;Ra, Jong-Beom
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.254-257
    • /
    • 2009
  • In this paper, we propose a learning-based super-resolution algorithm. In the proposed algorithm, a multi-resolution wavelet approach is adopted to perform the synthesis of local high-frequency features. To obtain a high-resolution image, wavelet coefficients of two dominant LH- and HL-bands are estimated based on wavelet frames. In order to prepare more efficient training sets, the proposed algorithm utilizes the LH-band and transposed HL-band. The training sets are then used for the estimation of wavelet coefficients for both LH- and HL-bands. Using the estimated high frequency bands, a high resolution image is reconstructed via the wavelet transform. Experimental results demonstrate that the proposed scheme can synthesize high-quality images.

  • PDF

Super-resolution Algorithm using Discrete Wavelet Transform for Single-image (이산 웨이블릿 변환을 이용한 영상의 초고해상도 기법)

  • Lim, Jong-Myeong;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.344-353
    • /
    • 2012
  • In this paper, we propose a super-resolution algorithm using discrete wavelet transform. In general super-resolution algorithms for single-image, probability based operations have been used for searching high-frequency components. Consequently, the complexity of the algorithm causes the increase of processing time. In the proposed algorithm, we use discrete wavelet transform to find high-frequency sub-bands. We perform inverse discrete wavelet transform using input image and high-frequency sub-bands of the same resolution as the input image which are obtained by performing discrete wavelet transform without down-sampling and then we obtain image with high-resolution. In the proposed algorithm, we use the down-sampled version of the original image ($512{\times}512$) as a test image ($256{\times}256$) to compare the performance of algorithms. Through experimental results, we confirm the improved efficiency of the proposed algorithm comparing with conventional interpolation algorithms and also decreased processing time comparing the probability based operations.

Fast Very Deep Convolutional Neural Network with Deconvolution for Super-Resolution (Super-Resolution을 위한 Deconvolution 적용 고속 컨볼루션 뉴럴 네트워크)

  • Lee, Donghyeon;Lee, Ho Seong;Lee, Kyujoong;Lee, Hyuk-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1750-1758
    • /
    • 2017
  • In super-resolution, various methods with Convolutional Neural Network(CNN) have recently been proposed. CNN based methods provide much higher image quality than conventional methods. Especially, VDSR outperforms other CNN based methods in terms of image quality. However, it requires a high computational complexity which prevents real-time processing. In this paper, the method to apply a deconvolution layer to VDSR is proposed to reduce computational complexity. Compared to original VDSR, the proposed method achieves the 4.46 times speed-up and its degradation in image quality is less than -0.1 dB which is negligible.

Fast and Accurate Single Image Super-Resolution via Enhanced U-Net

  • Chang, Le;Zhang, Fan;Li, Biao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1246-1262
    • /
    • 2021
  • Recent studies have demonstrated the strong ability of deep convolutional neural networks (CNNs) to significantly boost the performance in single image super-resolution (SISR). The key concern is how to efficiently recover and utilize diverse information frequencies across multiple network layers, which is crucial to satisfying super-resolution image reconstructions. Hence, previous work made great efforts to potently incorporate hierarchical frequencies through various sophisticated architectures. Nevertheless, economical SISR also requires a capable structure design to balance between restoration accuracy and computational complexity, which is still a challenge for existing techniques. In this paper, we tackle this problem by proposing a competent architecture called Enhanced U-Net Network (EUN), which can yield ready-to-use features in miscellaneous frequencies and combine them comprehensively. In particular, the proposed building block for EUN is enhanced from U-Net, which can extract abundant information via multiple skip concatenations. The network configuration allows the pipeline to propagate information from lower layers to higher ones. Meanwhile, the block itself is committed to growing quite deep in layers, which empowers different types of information to spring from a single block. Furthermore, due to its strong advantage in distilling effective information, promising results are guaranteed with comparatively fewer filters. Comprehensive experiments manifest our model can achieve favorable performance over that of state-of-the-art methods, especially in terms of computational efficiency.