• 제목/요약/키워드: Image semantic segmentation

검색결과 145건 처리시간 0.02초

안개영상의 의미론적 분할 및 안개제거를 위한 심층 멀티태스크 네트워크 (Deep Multi-task Network for Simultaneous Hazy Image Semantic Segmentation and Dehazing)

  • 송태용;장현성;하남구;연윤모;권구용;손광훈
    • 한국멀티미디어학회논문지
    • /
    • 제22권9호
    • /
    • pp.1000-1010
    • /
    • 2019
  • Image semantic segmentation and dehazing are key tasks in the computer vision. In recent years, researches in both tasks have achieved substantial improvements in performance with the development of Convolutional Neural Network (CNN). However, most of the previous works for semantic segmentation assume the images are captured in clear weather and show degraded performance under hazy images with low contrast and faded color. Meanwhile, dehazing aims to recover clear image given observed hazy image, which is an ill-posed problem and can be alleviated with additional information about the image. In this work, we propose a deep multi-task network for simultaneous semantic segmentation and dehazing. The proposed network takes single haze image as input and predicts dense semantic segmentation map and clear image. The visual information getting refined during the dehazing process can help the recognition task of semantic segmentation. On the other hand, semantic features obtained during the semantic segmentation process can provide cues for color priors for objects, which can help dehazing process. Experimental results demonstrate the effectiveness of the proposed multi-task approach, showing improved performance compared to the separate networks.

분류된 영역 병합에 의한 객체 원형을 보존하는 영상 분할 (Image segmentation preserving semantic object contours by classified region merging)

  • 박현상;나종범
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.661-664
    • /
    • 1998
  • Since the region segmentation at high resolution contains most of viable semantic object contours in an image, the bottom-up approach for image segmentation is appropriate for the application such as MPEG-4 which needs to preserve semantic object contours. However, the conventioal region merging methods, that follow the region segmentation, have poor performance in keeping low-contrast semantic object contours. In this paper, we propose an image segmentation algorithm based on classified region merging. The algorithm pre-segments an image with a large number of small regions, and also classifies it into several classes having similar gradient characteristics. Then regions only in the same class are merged according to the boundary weakness or statisticsal similarity. The simulation result shows that the proposed image segmentation preserves semantic object contours very well even with a small number of regions.

  • PDF

Image Semantic Segmentation Using Improved ENet Network

  • Dong, Chaoxian
    • Journal of Information Processing Systems
    • /
    • 제17권5호
    • /
    • pp.892-904
    • /
    • 2021
  • An image semantic segmentation model is proposed based on improved ENet network in order to achieve the low accuracy of image semantic segmentation in complex environment. Firstly, this paper performs pruning and convolution optimization operations on the ENet network. That is, the network structure is reasonably adjusted for better results in image segmentation by reducing the convolution operation in the decoder and proposing the bottleneck convolution structure. Squeeze-and-excitation (SE) module is then integrated into the optimized ENet network. Small-scale targets see improvement in segmentation accuracy via automatic learning of the importance of each feature channel. Finally, the experiment was verified on the public dataset. This method outperforms the existing comparison methods in mean pixel accuracy (MPA) and mean intersection over union (MIOU) values. And in a short running time, the accuracy of the segmentation and the efficiency of the operation are guaranteed.

A Deep Learning-Based Image Semantic Segmentation Algorithm

  • Chaoqun, Shen;Zhongliang, Sun
    • Journal of Information Processing Systems
    • /
    • 제19권1호
    • /
    • pp.98-108
    • /
    • 2023
  • This paper is an attempt to design segmentation method based on fully convolutional networks (FCN) and attention mechanism. The first five layers of the Visual Geometry Group (VGG) 16 network serve as the coding part in the semantic segmentation network structure with the convolutional layer used to replace pooling to reduce loss of image feature extraction information. The up-sampling and deconvolution unit of the FCN is then used as the decoding part in the semantic segmentation network. In the deconvolution process, the skip structure is used to fuse different levels of information and the attention mechanism is incorporated to reduce accuracy loss. Finally, the segmentation results are obtained through pixel layer classification. The results show that our method outperforms the comparison methods in mean pixel accuracy (MPA) and mean intersection over union (MIOU).

의미론적 영상 분할의 정확도 향상을 위한 에지 정보 기반 후처리 방법 (Post-processing Algorithm Based on Edge Information to Improve the Accuracy of Semantic Image Segmentation)

  • 김정환;김선혁;김주희;최형일
    • 한국콘텐츠학회논문지
    • /
    • 제21권3호
    • /
    • pp.23-32
    • /
    • 2021
  • 컴퓨터 비전 분야의 의미론적 영상 분할(Semantic Image Segmentation) 기술은 이미지를 픽셀 단위로 분할 하여 클래스를 나누는 기술이다. 이 기술도 기계 학습을 이용한 방법으로 성능이 빠르게 향상되는 중이며, 픽셀 단위의 정보를 활용할 수 있는 높은 활용성이 주목받는 기술이다. 그러나 이 기술은 초기부터 최근까지도 계속 '세밀하지 못한 분할'에 대한 문제가 제기되어 왔다. 이 문제는 레이블 맵의 크기를 계속 늘리면서 발생한 문제이기 때문에, 자세한 에지 정보가 있는 원본 영상의 에지 맵을 이용해 레이블 맵을 수정하여 개선할 수 있을 것으로 예상할 수 있었다. 따라서 본 논문은 기존 방법대로 학습 기반의 의미론적 영상 분할을 유지하되, 그 결과인 레이블 맵을 원본 영상의 에지 맵 기반으로 수정하는 후처리 알고리즘을 제안한다. 기존의 방법에 알고리즘의 적용 한 뒤 전후의 정확도를 비교했을 때 평균적으로 약 1.74% 픽셀 정확도와 1.35%의 IoU(Intersection of Union) 정확도가 향상되었으며, 결과를 분석했을 때 성공적으로 본래 목표한 세밀한 분할 기능을 개선했음을 보였다.

잔차 연결의 조건부 생성적 적대 신경망을 사용한 시맨틱 객체 분할 (Semantic Object Segmentation Using Conditional Generative Adversarial Network with Residual Connections)

  • ;;;강현수;서재원
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1919-1925
    • /
    • 2022
  • 본 논문에서는 시맨틱 분할을 위한 조건부 생성적 적대 신경망 기반의 이미지 대 이미지 변환 접근법을 제안한다. 시맨틱 분할은 동일한 개체 클래스에 속하는 이미지 부분을 함께 클러스터링하는 작업이다. 기존의 픽셀별 분류 방식과 달리 제안하는 방식은 픽셀 회귀 방식을 사용하여 입력 RGB 이미지를 해당 시맨틱 분할 마스크로 구문 분석한다. 제안하는 방법은 Pix2Pix 이미지 합성 방식을 기반으로 하였다. 잔차 연결이 훈련 프로세스를 가속화하고 더 정확한 결과를 생성하므로 생성기 및 판별기 아키텍처 모두에 대해 잔여 연결 기반 컨볼루션 신경망 아키텍처를 사용하였다. 제안하는 방법은 NYU-depthV2 데이터셋를 이용하여 학습 및 테스트 되었으며 우수한 mIOU 값(49.5%)을 달성할 수 있었다. 또한 시맨틱 객체분할 실험에서 제안한 방법과 현재 방법을 비교하여 제안한 방법이 기존의 대부분의 방법들보다 성능이 우수함을 보였다.

영상수준과 픽셀수준 분류를 결합한 영상 의미분할 (Semantic Image Segmentation Combining Image-level and Pixel-level Classification)

  • 김선국;이칠우
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1425-1430
    • /
    • 2018
  • In this paper, we propose a CNN based deep learning algorithm for semantic segmentation of images. In order to improve the accuracy of semantic segmentation, we combined pixel level object classification and image level object classification. The image level object classification is used to accurately detect the characteristics of an image, and the pixel level object classification is used to indicate which object area is included in each pixel. The proposed network structure consists of three parts in total. A part for extracting the features of the image, a part for outputting the final result in the resolution size of the original image, and a part for performing the image level object classification. Loss functions exist for image level and pixel level classification, respectively. Image-level object classification uses KL-Divergence and pixel level object classification uses cross-entropy. In addition, it combines the layer of the resolution of the network extracting the features and the network of the resolution to secure the position information of the lost feature and the information of the boundary of the object due to the pooling operation.

DA-Res2Net: a novel Densely connected residual Attention network for image semantic segmentation

  • Zhao, Xiaopin;Liu, Weibin;Xing, Weiwei;Wei, Xiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권11호
    • /
    • pp.4426-4442
    • /
    • 2020
  • Since scene segmentation is becoming a hot topic in the field of autonomous driving and medical image analysis, researchers are actively trying new methods to improve segmentation accuracy. At present, the main issues in image semantic segmentation are intra-class inconsistency and inter-class indistinction. From our analysis, the lack of global information as well as macroscopic discrimination on the object are the two main reasons. In this paper, we propose a Densely connected residual Attention network (DA-Res2Net) which consists of a dense residual network and channel attention guidance module to deal with these problems and improve the accuracy of image segmentation. Specifically, in order to make the extracted features equipped with stronger multi-scale characteristics, a densely connected residual network is proposed as a feature extractor. Furthermore, to improve the representativeness of each channel feature, we design a Channel-Attention-Guide module to make the model focusing on the high-level semantic features and low-level location features simultaneously. Experimental results show that the method achieves significant performance on various datasets. Compared to other state-of-the-art methods, the proposed method reaches the mean IOU accuracy of 83.2% on PASCAL VOC 2012 and 79.7% on Cityscapes dataset, respectively.

독점 멀티 분류기의 심층 학습 모델을 사용한 약지도 시맨틱 분할 (Weakly-supervised Semantic Segmentation using Exclusive Multi-Classifier Deep Learning Model)

  • 최현준;강동중
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.227-233
    • /
    • 2019
  • 최근 딥러닝 기술의 발달과 함께 신경 네트워크는 컴퓨터 비전에서도 성공을 거두고 있다. 컨볼루션 신경망은 단순한 영상 분류 작업뿐만 아니라 객체 분할 및 검출 등 난이도가 높은 작업에서도 탁월한 성능을 보였다. 그러나 그러한 많은 심층 학습 모델은 지도학습에 기초하고 있으며, 이는 이미지 라벨보다 주석 라벨이 더 많이 필요하다. 특히 semantic segmentation 모델은 훈련을 위해 픽셀 수준의 주석을 필요로 하는데, 이는 매우 중요하다. 이 논문은 이러한 문제를 해결하기 위한 네트워크 훈련을 위해 영상 수준 라벨만 필요한 약지도 semantic segmentation 방법을 제안한다. 기존의 약지도학습 방법은 대상의 특정 영역만 탐지하는 데 한계가 있다. 반면에, 본 논문에서는 우리의 모델이 사물의 더 다른 부분을 인식하도 multi-classifier 심층 학습 아키텍처를 사용한다. 제안된 방법은 VOC 2012 검증 데이터 세트를 사용하여 평가한다.

딥러닝 기반의 Semantic Segmentation을 위한 Residual U-Net에 관한 연구 (A Study on Residual U-Net for Semantic Segmentation based on Deep Learning)

  • 신석용;이상훈;한현호
    • 디지털융복합연구
    • /
    • 제19권6호
    • /
    • pp.251-258
    • /
    • 2021
  • 본 논문에서는 U-Net 기반의 semantic segmentation 방법에서 정확도를 향상시키기 위해 residual learning을 활용한 인코더-디코더 구조의 모델을 제안하였다. U-Net은 딥러닝 기반의 semantic segmentation 방법이며 자율주행 자동차, 의료 영상 분석과 같은 응용 분야에서 주로 사용된다. 기존 U-Net은 인코더의 얕은 구조로 인해 특징 압축 과정에서 손실이 발생한다. 특징 손실은 객체의 클래스 분류에 필요한 context 정보 부족을 초래하고 segmentation 정확도를 감소시키는 문제가 있다. 이를 개선하기 위해 제안하는 방법은 기존 U-Net에 특징 손실과 기울기 소실 문제를 방지하는데 효과적인 residual learning을 활용한 인코더를 통해 context 정보를 효율적으로 추출하였다. 또한, 인코더에서 down-sampling 연산을 줄여 특징맵에 포함된 공간 정보의 손실을 개선하였다. 제안하는 방법은 Cityscapes 데이터셋 실험에서 기존 U-Net 방법에 비해 segmentation 결과가 약 12% 향상되었다.