• Title/Summary/Keyword: Image processing development environment

Search Result 179, Processing Time 0.027 seconds

Character production of 3D game development environment (3D 게임 개발 환경에서의 캐릭터 제작)

  • Maeng, Chul-Joo;Kwak, Hun-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.15-18
    • /
    • 2003
  • 현재 게임 사용자의 증가에 따른 다양한 캐릭터들이 게임을 통해서 등장하고 있다. 하지만 게임 시장의 빠른 성장에 비해 완성도와 게임 개발 기술이 많이 뒤떨어진다. 이에 본 논문은 현재 3D게임에서 보여지는 캐릭터들의 그래픽과 시스템의 절충 방안을 위해 사용되어지는 표현방법 둥을 연구하고 분석하여 향후 보완점 및 앞으로의 연구방향을 살펴보았다.

  • PDF

Head tracking system using image processing (영상처리를 이용한 머리의 움직임 추적 시스템)

  • 박경수;임창주;반영환;장필식
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 1997
  • This paper is concerned with the development and evaluation of the camera calibration method for a real-time head tracking system. Tracking of head movements is important in the design of an eye-controlled human/computer interface and the area of virtual environment. We proposed a video-based head tracking system. A camera was mounted on the subject's head and it took the front view containing eight 3-dimensional reference points(passive retr0-reflecting markers) fixed at the known position(computer monitor). The reference points were captured by image processing board. These points were used to calculate the position (3-dimensional) and orientation of the camera. A suitable camera calibration method for providing accurate extrinsic camera parameters was proposed. The method has three steps. In the first step, the image center was calibrated using the method of varying focal length. In the second step, the focal length and the scale factor were calibrated from the Direct Linear Transformation (DLT) matrix obtained from the known position and orientation of the camera. In the third step, the position and orientation of the camera was calculated from the DLT matrix, using the calibrated intrinsic camera parameters. Experimental results showed that the average error of camera positions (3- dimensional) is about $0.53^{\circ}C$, the angular errors of camera orientations are less than $0.55^{\circ}C$and the data aquisition rate is about 10Hz. The results of this study can be applied to the tracking of head movements related to the eye-controlled human/computer interface and the virtual environment.

  • PDF

Edge Detection based on Contrast Analysis in Low Light Level Environment (저조도 환경에서 명암도 분석 기반의 에지 검출)

  • Park, Hwa-Jung;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.437-440
    • /
    • 2022
  • In modern society, the use of the image processing field is increasing rapidly due to the 4th industrial revolution and the development of IoT technology. In particular, edge detection is widely used in various fields as an essential preprocessing process in image processing applications such as image classification and object detection. Conventional methods for detecting an edge include a Sobel edge detection filter, a Roberts edge detection filter, a Prewitt edge detection filter, Laplacian of Gaussian (LoG), and the like. However, existing methods have the disadvantage of showing somewhat insufficient performance of edge detection characteristics in a low-light level environment with low contrast. Therefore, this paper proposes an edge detection algorithm based on contrast analysis to increase edge detection characteristics even in low-light level environments.

  • PDF

System Implementation for PC-based Center Position Control of Strip (PC 기반 Strip 중앙 위치 제어 시스템의 구현)

  • Park, Nam-Jun;Jung, Jin-Yang;Kim, Hyun-Sool;Han, Young-Oh;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.395-397
    • /
    • 1996
  • The existing CPC(Center Position Controller) has unstably performed because of dusts on reflection panel, CCD protector contamination due to high temperature in furnace or other parameters. The reason is that the existing CPC has a Z80 processor as a CPU and only performs low level image processing as a simple edge detector. So the improvement of control system through the development of robust edge detection algorithm overcoming changes of measuring environment is needed. For this, in this study we carefully analyze the image of the strip rolled in occasion that measuring environment is changing, develop the optimal edge detection algorithm to solve the problems, generate the control signal suitable for the existing CPC(Center Position Controller), and propose the capability of application to the actual environment.

  • PDF

Adversarial Learning-Based Image Correction Methodology for Deep Learning Analysis of Heterogeneous Images (이질적 이미지의 딥러닝 분석을 위한 적대적 학습기반 이미지 보정 방법론)

  • Kim, Junwoo;Kim, Namgyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.457-464
    • /
    • 2021
  • The advent of the big data era has enabled the rapid development of deep learning that learns rules by itself from data. In particular, the performance of CNN algorithms has reached the level of self-adjusting the source data itself. However, the existing image processing method only deals with the image data itself, and does not sufficiently consider the heterogeneous environment in which the image is generated. Images generated in a heterogeneous environment may have the same information, but their features may be expressed differently depending on the photographing environment. This means that not only the different environmental information of each image but also the same information are represented by different features, which may degrade the performance of the image analysis model. Therefore, in this paper, we propose a method to improve the performance of the image color constancy model based on Adversarial Learning that uses image data generated in a heterogeneous environment simultaneously. Specifically, the proposed methodology operates with the interaction of the 'Domain Discriminator' that predicts the environment in which the image was taken and the 'Illumination Estimator' that predicts the lighting value. As a result of conducting an experiment on 7,022 images taken in heterogeneous environments to evaluate the performance of the proposed methodology, the proposed methodology showed superior performance in terms of Angular Error compared to the existing methods.

Automated condition assessment of concrete bridges with digital imaging

  • Adhikari, Ram S.;Bagchi, Ashutosh;Moselhi, Osama
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.901-925
    • /
    • 2014
  • The reliability of a Bridge management System depends on the quality of visual inspection and the reliable estimation of bridge condition rating. However, the current practices of visual inspection have been identified with several limitations, such as: they are time-consuming, provide incomplete information, and their reliance on inspectors' experience. To overcome such limitations, this paper presents an approach of automating the prediction of condition rating for bridges based on digital image analysis. The proposed methodology encompasses image acquisition, development of 3D visualization model, image processing, and condition rating model. Under this method, scaling defect in concrete bridge components is considered as a candidate defect and the guidelines in the Ontario Structure Inspection Manual (OSIM) have been adopted for developing and testing the proposed method. The automated algorithms for scaling depth prediction and mapping of condition ratings are based on training of back propagation neural networks. The result of developed models showed better prediction capability of condition rating over the existing methods such as, Naïve Bayes Classifiers and Bagged Decision Tree.

Development of a Mobile App Combining React Native and Unity3D for Chromakey-based Image Composition (React Native와 Unity3D를 활용한 크로마키 기반 이미지 합성 모바일 앱 개발)

  • Kim, Seung-Jun;Seo, Beom-Joo;Cho, Sung-Hyun
    • Journal of Korea Game Society
    • /
    • v.20 no.4
    • /
    • pp.11-20
    • /
    • 2020
  • In the rapidly changing mobile app market, it is crucial to develop a good idea quickly and receive its market evaluation. For a small-sized company, however, it is very challenging to rapidly develop and deploy their products in response to highly fragmented mobile environments. This article demonstrates that our integrated development environment using both React Native and Unity3D when developing a mobile app achieves a high level of functionality and performance requirements successfully. Moreover, this integrated environment helps reduce development costs and shorten development time.

A Hadoop-based Multimedia Transcoding System for Processing Social Media in the PaaS Platform of SMCCSE

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku;Jeong, Changsung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2827-2848
    • /
    • 2012
  • Previously, we described a social media cloud computing service environment (SMCCSE). This SMCCSE supports the development of social networking services (SNSs) that include audio, image, and video formats. A social media cloud computing PaaS platform, a core component in a SMCCSE, processes large amounts of social media in a parallel and distributed manner for supporting a reliable SNS. Here, we propose a Hadoop-based multimedia system for image and video transcoding processing, necessary functions of our PaaS platform. Our system consists of two modules, including an image transcoding module and a video transcoding module. We also design and implement the system by using a MapReduce framework running on a Hadoop Distributed File System (HDFS) and the media processing libraries Xuggler and JAI. In this way, our system exponentially reduces the encoding time for transcoding large amounts of image and video files into specific formats depending on user-requested options (such as resolution, bit rate, and frame rate). In order to evaluate system performance, we measure the total image and video transcoding time for image and video data sets, respectively, under various experimental conditions. In addition, we compare the video transcoding performance of our cloud-based approach with that of the traditional frame-level parallel processing-based approach. Based on experiments performed on a 28-node cluster, the proposed Hadoop-based multimedia transcoding system delivers excellent speed and quality.

A Study on the Landscape Arrangement Simulation System for Small Streams (소하천 경관정비 모의시스템에 관한 연구)

  • 김선주;윤경섭;이광야;박성삼
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.5
    • /
    • pp.86-96
    • /
    • 1997
  • The arrangement of small streams in rural area, in the past times, attached importance to the prevention of flood damage through the straightening and lining of streams. Recently, the way of small stream arrangement is introducing the idea of water friendly environment or friendly space. As a result, there has been much concern with water favorable river management model which may lead to control flood. However, it is very difficult to develop a model applicable to all types of rivers, since each river has different flow velocity, flow amount and unique ecological characteristics. In this study, photo processing technique, one of landscape simulation methods, has been adopted because it helps to visually express and comprehensively evaluate pre and post scenery and easily applicable. Some important guideline and technique for the planning of small stream landscape arrangement are mentioned in this study. The simulation system for acquiring water favorable space and arranging landscapes needs to develop database which can forecast various types of landscape. It may also be used for the bases of planning and designing river environment arrangement. Computer aided image processing system enables to make selective planning in river environment arrangement. It may also enables to develop the methods for river environment development, ecology conservation, and multipurpose space utilization. Moreover, it makes economic river arrangement by applying river environment arrangement methods relevant to geographical characteristics. There are some limitations in this study, such as shortage of exact investigation on the stream direction and velocity in landscape arrangement. Continuous monitoring and research may be required to develop techniques through the application of computer graphics and digital image processing.

  • PDF

An Image Processing System for the Harvesting robot$^{1)}$ (포도수확용 로봇 개발을 위한 영상처리시스템)

  • Lee, Dae-Weon;Kim, Dong-Woo;Kim, Hyun-Tae;Lee, Yong-Kuk;Si-Heung
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.172-180
    • /
    • 2001
  • A grape fruit is required for a lot of labor to harvest in time in Korea, since the fruit is cut and grabbed currently by hand. In foreign country, especially France, a grape harvester has been developed for processing to make wine out of a grape, not to eat a fresh grape fruit. However, a harvester which harvests to eat a fresh grape fruit has not been developed yet. Therefore, this study was designed and constructed to develope a image processing system for a fresh grape harvester. Its development involved the integration of a vision system along with an personal computer and two cameras. Grape recognition, which was able to found the accurate cutting position in three dimension by the end-effector, needed to find out the object from the background by using two different images from two cameras. Based on the results of this research the following conclusions were made: The model grape was located and measured within less than 1,100 mm from camera center, which means center between two cameras. The distance error of the calculated distance had the distance error within 5mm by using model image in the laboratory. The image processing system proved to be a reliable system for measuring the accurate distance between the camera center and the grape fruit. Also, difference between actual distance and calculated distance was found within 5 mm using stereo vision system in the field. Therefore, the image processing system would be mounted on a grape harvester to be founded to the position of the a grape fruit.

  • PDF