• Title/Summary/Keyword: Image pixel

Search Result 2,503, Processing Time 0.035 seconds

Simplified Representation of Image Contour

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.317-322
    • /
    • 2018
  • We use edge detection technique for the input image to extract the entire edges of the object in the image and then select only the edges that construct the outline of the object. By examining the positional relation between these pixels composing the outline, a simplified version of the outline of the object in the input image is generated by removing unnecessary pixels while maintaining the condition of connection of the outline. For each pixel constituting the outline, its direction is calculated by examining the positional relation with the next pixel. Then, we group the consecutive pixels with same direction into one and then change them to a line segment instead of a point. Among those line segments composing the outline of the object, a line segment whose length is smaller than a predefined minimum length of acceptable line segment is removed by merging it into one of the adjacent line segments. As a result, an outline composed of line segments of over a certain length is obtained through this process.

Compression-friendly Image Encryption Algorithm Based on Order Relation

  • Ganzorig Gankhuyag;Yoonsik Choe
    • Journal of Internet Technology
    • /
    • v.21 no.4
    • /
    • pp.1013-1024
    • /
    • 2020
  • In this paper, we introduce an image encryption algorithm that can be used in combination with compression algorithms. Existing encryption algorithms focus on either encryption strength or speed without compression, whereas the proposed algorithm improves compression efficiency while ensuring security. Our encryption algorithm decomposes images into pixel values and pixel intensity subsets, and computes the order of permutations. An encrypted image becomes unpredictable after permutation. Order permutation reduces the discontinuity between signals in an image, increasing compression efficiency. The experimental results show that the security strength of the proposed algorithm is similar to that of existing algorithms. Additionally, we tested the algorithm on the JPEG and the JPEG2000 with variable compression ratios. Compared to existing methods applied without encryption, the proposed algorithm significantly increases PSNR and SSIM values.

An Efficient Dead Pixel Detection Algorithm Implementation for CMOS Image Sensor (CMOS 이미지 센서에서의 효율적인 불량화소 검출을 위한 알고리듬 및 하드웨어 설계)

  • An, Jee-Hoon;Shin, Seung-Gi;Lee, Won-Jae;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.55-62
    • /
    • 2007
  • This paper proposes a defective pixel detection algorithm and its hardware structure for CCD/CMOS image sensor. In previous algorithms, the characteristics of image have not been considered. Also, some algorithms need quite a time to detect defective pixels. In order to make up for those disadvantages, the proposed defective pixel detection method detects defective pixels efficiently by considering the edges in the image and verifies them using several frames while checking scene-changes. Whenever scene-change is occurred, potentially defective pixels are checked and confirmed whether it is defective or not. Test results showed that the correct detection rate in a frame was increased 6% and the defective pixel verification time was decreased 60%. The proposed algorithm was implemented with verilog HDL. The edge indicator in color interpolation block was reused. Total logic gate count was 5.4k using 0.25um CMOS standard cell library.

Modified Multi-Chaotic Systems that are Based on Pixel Shuffle for Image Encryption

  • Verma, Om Prakash;Nizam, Munazza;Ahmad, Musheer
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.271-286
    • /
    • 2013
  • Recently, a pixel-chaotic-shuffling (PCS) method has been proposed by Huang et al. for encrypting color images using multiple chaotic systems like the Henon, the Lorenz, the Chua, and the Rossler systems. All of which have great encryption performance. The authors claimed that their pixel-chaotic-shuffle (PCS) encryption method has high confidential security. However, the security analysis of the PCS method against the chosen-plaintext attack (CPA) and known-plaintext attack (KPA) performed by Solak et al. successfully breaks the PCS encryption scheme without knowing the secret key. In this paper we present an improved shuffling pattern for the plaintext image bits to make the cryptosystem proposed by Huang et al. resistant to chosen-plaintext attack and known-plaintext attack. The modifications in the existing PCS encryption method are proposed to improve its security performance against the potential attacks described above. The Number of Pixel Change Rate (NPCR), Unified Average Changed Intensity (UACI), information entropy, and correlation coefficient analysis are performed to evaluate the statistical performance of the modified PCS method. The simulation analysis reveals that the modified PCS method has better statistical features and is more resistant to attacks than Huang et al.'s PCS method.

Impulse Noise Removal using Switching Mean Filter (스위칭 평균 필터를 이용한 임펄스 잡음 제거)

  • Kim, Kuk-Seung;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.477-481
    • /
    • 2009
  • In this paper the process of transmitting images signal restore to image corrupted by impulse noise proposed switching mean filter. these filter is differential size using the two state noise detection distinguishes noise pixel and noise free pixel. Follow the detected impulse noise density in the image remove the impulse noise using switching mean filter these substituted pixel in order to non-recursive and recursive form from control process of the next pixel comes to be used with neighbor pixel process. Through the simulation, we compared with the existing methods and capabilties.

  • PDF

An Improved Steganography Method Based on Least-Significant-Bit Substitution and Pixel-Value Differencing

  • Liu, Hsing-Han;Su, Pin-Chang;Hsu, Meng-Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4537-4556
    • /
    • 2020
  • This research was based on the study conducted by Khodaei et al. (2012), namely, the least-significant-bit (LSB) substitution combined with the pixel-value differencing (PVD) steganography, and presented an improved irreversible image steganography method. Such a method was developed through integrating the improved LSB substitution with the modulus function-based PVD steganography to increase steganographic capacity of the original technique while maintaining the quality of images. It partitions the cover image into non-overlapped blocks, each of which consists of 3 consecutive pixels. The 2nd pixel represents the base, in which secret data are embedded by using the 3-bit LSB substitution. Each of the other 2 pixels is paired with the base respectively for embedding secret data by using an improved modulus PVD method. The experiment results showed that the method can greatly increase steganographic capacity in comparison with other PVD-based techniques (by a maximum amount of 135%), on the premise that the quality of images is maintained. Last but not least, 2 security analyses, the pixel difference histogram (PDH) and the content-selective residual (CSR) steganalysis were performed. The results indicated that the method is capable of preventing the detection of the 2 common techniques.

Computer Vision Based Measurement, Error Analysis and Calibration (컴퓨터 시각(視覺)에 의거한 측정기술(測定技術) 및 측정오차(測定誤差)의 분석(分析)과 보정(補正))

  • Hwang, H.;Lee, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.65-78
    • /
    • 1992
  • When using a computer vision system for a measurement, the geometrically distorted input image usually restricts the site and size of the measuring window. A geometrically distorted image caused by the image sensing and processing hardware degrades the accuracy of the visual measurement and prohibits the arbitrary selection of the measuring scope. Therefore, an image calibration is inevitable to improve the measuring accuracy. A calibration process is usually done via four steps such as measurement, modeling, parameter estimation, and compensation. In this paper, the efficient error calibration technique of a geometrically distorted input image was developed using a neural network. After calibrating a unit pixel, the distorted image was compensated by training CMLAN(Cerebellar Model Linear Associator Network) without modeling the behavior of any system element. The input/output training pairs for the network was obtained by processing the image of the devised sampled pattern. The generalization property of the network successfully compensates the distortion errors of the untrained arbitrary pixel points on the image space. The error convergence of the trained network with respect to the network control parameters were also presented. The compensated image through the network was then post processed using a simple DDA(Digital Differential Analyzer) to avoid the pixel disconnectivity. The compensation effect was verified using known sized geometric primitives. A way to extract directly a real scaled geometric quantity of the object from the 8-directional chain coding was also devised and coded. Since the developed calibration algorithm does not require any knowledge of modeling system elements and estimating parameters, it can be applied simply to any image processing system. Furthermore, it efficiently enhances the measurement accuracy and allows the arbitrary sizing and locating of the measuring window. The applied and developed algorithms were coded as a menu driven way using MS-C language Ver. 6.0, PC VISION PLUS library functions, and VGA graphic functions.

  • PDF

Denoise of Astronomical Images with Deep Learning

  • Park, Youngjun;Choi, Yun-Young;Moon, Yong-Jae;Park, Eunsu;Lim, Beomdu;Kim, Taeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2019
  • Removing noise which occurs inevitably when taking image data has been a big concern. There is a way to raise signal-to-noise ratio and it is regarded as the only way, image stacking. Image stacking is averaging or just adding all pixel values of multiple pictures taken of a specific area. Its performance and reliability are unquestioned, but its weaknesses are also evident. Object with fast proper motion can be vanished, and most of all, it takes too long time. So if we can handle single shot image well and achieve similar performance, we can overcome those weaknesses. Recent developments in deep learning have enabled things that were not possible with former algorithm-based programming. One of the things is generating data with more information from data with less information. As a part of that, we reproduced stacked image from single shot image using a kind of deep learning, conditional generative adversarial network (cGAN). r-band camcol2 south data were used from SDSS Stripe 82 data. From all fields, image data which is stacked with only 22 individual images and, as a pair of stacked image, single pass data which were included in all stacked image were used. All used fields are cut in $128{\times}128$ pixel size, so total number of image is 17930. 14234 pairs of all images were used for training cGAN and 3696 pairs were used for verify the result. As a result, RMS error of pixel values between generated data from the best condition and target data were $7.67{\times}10^{-4}$ compared to original input data, $1.24{\times}10^{-3}$. We also applied to a few test galaxy images and generated images were similar to stacked images qualitatively compared to other de-noising methods. In addition, with photometry, The number count of stacked-cGAN matched sources is larger than that of single pass-stacked one, especially for fainter objects. Also, magnitude completeness became better in fainter objects. With this work, it is possible to observe reliably 1 magnitude fainter object.

  • PDF

Design and Implementation of Automatic Detection Method of Corners of Grid Pattern from Distortion Corrected Image (왜곡보정 영상에서의 그리드 패턴 코너의 자동 검출 방법의 설계 및 구현)

  • Cheon, Sweung-Hwan;Jang, Jong-Wook;Jang, Si-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2645-2652
    • /
    • 2013
  • For a variety of vision systems such as car omni-directional surveillance systems and robot vision systems, many cameras have been equipped and used. In order to detect corners of grid pattern in AVM(Around View Monitoring) systems, after the non-linear radial distortion image obtained from wide-angle camera is corrected, corners of grids of the distortion corrected image must be detected. Though there are transformations such as Sub-Pixel and Hough transformation as corner detection methods for AVM systems, it is difficult to achieve automatic detection by Sub-Pixel and accuracy by Hough transformation. Therefore, we showed that the automatic detection proposed in this paper, which detects corners accurately from the distortion corrected image could be applied for AVM systems, by designing and implementing it, and evaluating its performance.

Weighted Filter Algorithm based on Distribution Pattern of Pixel Value for AWGN Removal (AWGN 제거를 위한 화소값 분포패턴에 기반한 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.44-49
    • /
    • 2022
  • Abstract Recently, with the development of IoT technology and communication media, various video equipment is being used in industrial fields. Image data acquired from cameras and sensors are easily affected by noise during transmission and reception, and noise removal is essential as it greatly affects system reliability. In this paper, we propose a weight filter algorithm based on the pixel value distribution pattern to preserve details in the process of restoring images damaged in AWGN. The proposed algorithm calculates weights according to the pixel value distribution pattern of the image and restores the image by applying a filtering mask. In order to analyze the noise removal performance of the proposed algorithm, it was simulated using enlarged image and PSNR compared to the existing method. The proposed algorithm preserves important characteristics of the image and shows the performance of efficiently removing noise compared to the existing method.