• Title/Summary/Keyword: Image modality

Search Result 165, Processing Time 0.027 seconds

IMAGING IN RADIATION THERAPY

  • Kim Si-Yong;Suh Tae-Suk
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.327-342
    • /
    • 2006
  • Radiation therapy is an important part of cancer treatment in which cancer patients are treated using high-energy radiation such as x-rays, gamma rays, electrons, protons, and neutrons. Currently, about half of all cancer patients receive radiation treatment during their whole cancer care process. The goal of radiation therapy is to deliver the necessary radiation dose to cancer cells while minimizing dose to surrounding normal tissues. Success of radiation therapy highly relies on how accurately 1) identifies the target and 2) aim radiation beam to the target. Both tasks are strongly dependent of imaging technology and many imaging modalities have been applied for radiation therapy such as CT (Computed Tomography), MRI (Magnetic Resonant Image), and PET (Positron Emission Tomogaphy). Recently, many researchers have given significant amount of effort to develop and improve imaging techniques for radiation therapy to enhance the overall quality of patient care. For example, advances in medical imaging technology have initiated the development of the state of the art radiation therapy techniques such as intensity modulated radiation therapy (IMRT), gated radiation therapy, tomotherapy, and image guided radiation therapy (IGRT). Capability of determining the local tumor volume and location of the tumor has been significantly improved by applying single or multi-modality imaging fur static or dynamic target. The use of multi-modality imaging provides a more reliable tumor volume, eventually leading to a better definitive local control. Image registration technique is essential to fuse two different image modalities and has been In significant improvement. Imaging equipments and their common applications that are in active use and/or under development in radiation therapy are reviewed.

Mammographic Image Contrast Enhancement using Wavelet Transform (Wavelet 변환을 이용한 Mammographic Image 개선에 관한 연구)

  • 윤정현;김선일;노용만
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.521-524
    • /
    • 1999
  • In spite of advances in image resolution and film contrast, check screen/film mammography remains one of diagnostic imaging modality where the image interpretation is very difficult. For the enhancement of film mammography, in this paper, dyadic wavelet transform is introduced. An unsharp masking technique is proposed and performed in wavelet domain. In addition, simple nonlinear enhancement and a denosing stage that preserves edges using wavelet shrinkage are computed into this technique. In this paper. we propose a new method for the gain setting of nonlinear enhancement and show result and comparison.

  • PDF

Phantom Experiments for Breast Cancer Detection by Ultrasound Transmission Period

  • Sakasegawa, Aya;Hoshino, Hirokazu;Tsuji, Kiichi;Hayakawa, Yoshinori
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.481-484
    • /
    • 2002
  • In every cancer early detection and early treatment is the best way to decrease mortality of patients. Moreover early detection of breast cancer increases the possibility of breast conservation treatment. Although mammography is the most powerful modality for early detection, it is hazardous to be used for young women due to X-ray exposure. Another modality of image diagnosis is ultrasound echo technique. But it is not so powerful to detect breast cancer compared to mammography. Palpation is another modality, but is largely dependent on the skill and experience of medical doctors. A new technique is tested its validity in phantom experiments with good results.

  • PDF

Optimised ML-based System Model for Adult-Child Actions Recognition

  • Alhammami, Muhammad;Hammami, Samir Marwan;Ooi, Chee-Pun;Tan, Wooi-Haw
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.929-944
    • /
    • 2019
  • Many critical applications require accurate real-time human action recognition. However, there are many hurdles associated with capturing and pre-processing image data, calculating features, and classification because they consume significant resources for both storage and computation. To circumvent these hurdles, this paper presents a recognition machine learning (ML) based system model which uses reduced data structure features by projecting real 3D skeleton modality on virtual 2D space. The MMU VAAC dataset is used to test the proposed ML model. The results show a high accuracy rate of 97.88% which is only slightly lower than the accuracy when using the original 3D modality-based features but with a 75% reduction ratio from using RGB modality. These results motivate implementing the proposed recognition model on an embedded system platform in the future.

Presentation Priority and Modality Conversion in MPEG-21 DIA

  • Thang, Truong Cong;Ro, Yong Man
    • Journal of Broadcast Engineering
    • /
    • v.8 no.4
    • /
    • pp.339-350
    • /
    • 2003
  • The Part 7 of MPEG-21, called Digital Item Adaptation, aims at an interoperable transparent access of multimedia contents in heterogeneous environments. This standard facilitates the development of Universal Multimedia Access (UMA) systems, which adapt the rich multimedia contents to provide user the best possible presentation under the constraints of various terminals and network connections. Content adaptation has two major aspects: one is modality conversion that converts content from one modality (e.g. video) to different modalities (e.g. image) the other is content scaling that changes the titrates (or qualities) of the contents without converting their modalities. At the output of adaptation process, the highly-subjective qualities of adapted contents nay vary widely with respect to point-of-views of different providers and different users. So, user should have some control on the adaptation process. In this paper, we describe two description tools of user characteristics, the presentation priority preference and the modality conversion preference, which allow user to have flexible choices on the qualities and modalities of output contents. We also present a systematic approach to integrate these user preferences into the adaptation process. These description tools are developed in the process of MPEG-21 standardization.

Comparison of measurement errors between conventional, digital cephalographs and hardcopies (일반 및 디지탈 측모두부방사선 규격사진, 하드카피의 계측오차 또는 확대율 비교)

  • Lee, Tae-Ho;Lee, Ki-Soo;Nam, Jong-Hyun;Kang, Yoon-Goo
    • The Journal of the Korean dental association
    • /
    • v.47 no.5
    • /
    • pp.282-290
    • /
    • 2009
  • The purpose of this study was to evaluate the measurement error between conventional films, digital cephalographs and hardcopy. The material consisted of 29 cephalographs which used image modality of Asahi CX-90SP in the Kyung Hee University Dental Hospital. One observer measured fiducial measurements at an interval of four weeks. Measurement error was tested by Dahlberg's formula. A paired t-test was used to detect it between each modality. The results are as follows; 1. The monitor-displayed digital image showed enlargement compared with the conventional image. The cephalometric measurements of the monitor-displayed digital image and conventional image were no statistically significant difference except SNB. 2. In conventional image, measurement errors of linear and angular measurements were 0.23mm, $0.36^{\circ}$, respective. In monitor-displayed digital image, measurement errors of linear and angular measurements were 0.63mm, $0.48^{\circ}$ respective. 3. The reduction ratio of hardcopy was 1.01% compared to the monitor-displayed digital image. Based on the results, it indicates that the digital cephalographs and hardcopy using storage phosphor digital radiography showed the same accuracy as the conventional films in clinical use.

  • PDF

Reproducibility of lateral cephalometric landmarks on conventional radiographs and spatial frequency-processed digital images

  • Shin Jeong-Won;Choi Hang-Moon;Heo Min-Suk;Lee Sam-Sun;Choi Hyun-Bae;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.32 no.4
    • /
    • pp.213-219
    • /
    • 2002
  • Purpose : Computed radiography (CR) has been used in cephalometric radiography and many studies have been carried out to improve image quality using various digital enhancement and filtering techniques, During CR image acquisition, the frequency rank and type affect to the image quality. The aim of this study was to compare the diagnostic quality of conventional cephalometric radiographs to those of computed radiography. Materials and Methods : The diagnostic quality of conventional cephalometric radiographs (MO) and their digital image counterparts were compared, and at the same time, six modalities (M1-M6) of spatial frequency-processed digital images were compared by evaluating the reproducibility of 23 cephalometric landmark locations. Reproducibility was defined as an observer's deviation (in mm) from the mean between all observers. Results and Conclusion: In comparison with the conventional cephalometric radiograph (MO), Ml showed statistically significant differences in 8 locations, M2 in 9, M3 12, M4 in 7, M5 in 12, and M6 showed significant differences in 14 of 23 landmark locations (p < 0.05). The number of reproducible landmarks that each modality possesses were 7 in M6, 6 in M5, 5 in M3, 4 in M4, 3 in M2, 2 in Ml, and 1 location in MO. The image modality that observers selected as having the best image quality was M5.

  • PDF

Multi-modality MEdical Image Registration based on Moment Information and Surface Distance (모멘트 정보와 표면거리 기반 다중 모달리티 의료영상 정합)

  • 최유주;김민정;박지영;윤현주;정명진;홍승봉;김명희
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.224-238
    • /
    • 2004
  • Multi-modality image registration is a widely used image processing technique to obtain composite information from two different kinds of image sources. This study proposes an image registration method based on moment information and surface distance, which improves the previous surface-based registration method. The proposed method ensures stable registration results with low registration error without being subject to the initial position and direction of the object. In the preprocessing step, the surface points of the object are extracted, and then moment information is computed based on the surface points. Moment information is matched prior to fine registration based on the surface distance, in order to ensure stable registration results even when the initial positions and directions of the objects are very different. Moreover, surface comer sampling algorithm has been used in extracting representative surface points of the image to overcome the limits of the existed random sampling or systematic sampling methods. The proposed method has been applied to brain MRI(Magnetic Resonance Imaging) and PET(Positron Emission Tomography), and its accuracy and stability were verified through registration error ratio and visual inspection of the 2D/3D registration result images.

Multimodality and Application Software (다중영상기기의 응용 소프트웨어)

  • Im, Ki-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.153-163
    • /
    • 2008
  • Medical imaging modalities to image either anatomical structure or functional processes have developed along somewhat independent paths. Functional images with single photon emission computed tomography (SPECT) and positron emission tomography (PET) are playing an increasingly important role in the diagnosis and staging of malignant disease, image-guided therapy planning, and treatment monitoring. SPECT and PET complement the more conventional anatomic imaging modalities of computed tomography (CT) and magnetic resonance (MR) imaging. When the functional imaging modality was combined with the anatomic imaging modality, the multimodality can help both identify and localize functional abnormalities. Combining PET with a high-resolution anatomical imaging modality such as CT can resolve the localization issue as long as the images from the two modalities are accurately coregistered. Software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. These challenges have recently been addressed by the introduction of the combined PET/CT scanner and SPECT/CT scanner, a hardware-oriented approach to image fusion. Combined PET/CT and SPECT/CT devices are playing an increasingly important role in the diagnosis and staging of human disease. The paper will review the development of multi modality instrumentations for clinical use from conception to present-day technology and the application software.

Statistical Properties of Intensity-Based Image Registration Methods

  • Kim, Jeong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1116-1124
    • /
    • 2005
  • We investigated the mean and variance of the MSE and the MI-based image registration methods that have been widely applied for image registration. By using the first order Taylor series expansion, we have approximated the mean and the variance for one-dimensional image registration. The asymptotic results show that the MSE based method is unbiased and efficient for the same image registration problem while the MI-based method shows larger variance. However, for the different modality image registration problem, the MSE based method is largely biased while the MI based method still achieves registration. The results imply that the MI based method achieves robustness to the different image modalities at the cost of inefficiency. The analytical results are supported by simulation results.