• 제목/요약/키워드: Image matching point

검색결과 352건 처리시간 0.027초

다중 스케일 영상 공간에서 특징점 클러스터를 이용한 영상스케일 예측 (Image Scale Prediction Using Key-point Clusters on Multi-scale Image Space)

  • 류권열
    • 융합신호처리학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2018
  • 본 논문에서는 다중 스케일 영상 공간에서 특징점 검출을 위해 수행되는 반복적인 과정을 제거하는 방법을 제안한다. 제안한 방법은 원 영상으로부터 특징점을 검출하고, 클러스터 필터를 이용하여 유효한 특징점을 선별하고, 특징점 클러스터를 생성한다. 그리고 특징점 클러스터의 방향 각도를 이용하여 참조 객체를 선별하고, 분산 거리 비율을 이용하여 원 영상의 스케일을 예측한다. 예측한 스케일에 따라 참조 영상의 스케일을 변환하고, 변환된 참조 영상에 대해 특징점 검출을 적용한다. 실험 결과 제안한 방법은 다중 스케일 영상을 사용하는 SIFT 방법 및 Scaled ORB 방법에 비해 특징점 검출 시간이 각각 75% 및 71% 향상됨을 알 수 있었다.

무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정 (RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery)

  • 박주언;김태헌;이창희;한유경
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.1135-1147
    • /
    • 2021
  • 고해상도 위성영상의 기하보정을 위해 촬영 당시의 위성 센서와 지표면과의 기하학적 관계를 복원하는 센서모델링 과정이 필요하다. 이를 위해 일반적으로 고해상도 위성은 RPC (Rational Polynomial Coefficient) 정보를 제공하고 있지만, 제공 RPC는 위성 센서의 위치와 자세 등에 의해 발생하는 기하왜곡을 포함하고 있다. 이러한 RPC 오차를 보정하기 위해 일반적으로 지상기준점(Ground Control Points)을 활용한다. 지상기준점을 수집하는 대표적인 방법으로 현장 측량을 통해 지상좌표를 취득하지만, 이는 위성영상의 품질이나 촬영 시기에 따른 토지피복의 변화, 기복변위 등으로 위성영상 내에서 지상기준점을 판독하기에 어려운 문제가 있다. 이에 최근에는 다양한 센서로부터 취득된 영상지도를 참조자료로 이용하여, 영상정합 기법을 통해 지상기준점 수집을 자동화할 수 있다. 본 연구에서는 무인항공기 영상을 활용하여 추출된 정합점을 통해 KOMPSAT-3A 위성영상의 RPC를 보정하고자 한다. 무인항공기 영상과 KOMPSAT-3A 위성영상의 정합점 추출을 위한 전처리 방법을 제안하고, 대표적인 특징기반 정합기법(Feature-based matching method)과 영역기반 정합기법(Area-based matching method)인 SURF (Speeded-Up Robust Features)와 위상상관(Phase Correlation) 기법을 각각 적용하여 추출된 정합점의 특성을 비교하였다. 각 기법을 통해 추출된 정합점을 활용하여 RPC 보정계수를 산출한 후, GNSS (Global Navigation Satellite System) 측량을 통해 직접 취득한 검사점에 적용하여 KOMPSAT-3A의 기하품질을 향상하였다. 제안기법의 성능 및 활용성 검증을 위해 GCP를 이용하여 보정한 결과와 비교하여 분석하였다. GCP 기반 보정 방법은 제공 RPC보다 Sample은 2.14 pixel, Line은 5.43 pixel 만큼 개선된 보정 정확도를 보였다. 그리고 SURF와 위상상관 기법을 활용한 제안기법은 제공 RPC보다 각각 Sample은 0.83 pixel, 1.49 pixel만큼 보정되었으며, Line은 4.81 pixel, 5.19 pixel만큼 개선되었다. 이를 통해 GCP 기반 위성영상 RPC 보정 방법의 대안으로 무인항공기 영상이 활용될 수 있음을 확인하였다.

Incremental Bundle Adjustment와 스테레오 영상 정합 기법을 적용한 무인항공기 영상에서의 포인트 클라우드 생성방안 연구 (A Study on Point Cloud Generation Method from UAV Image Using Incremental Bundle Adjustment and Stereo Image Matching Technique)

  • 이수암;황윤혁;김수현
    • 대한원격탐사학회지
    • /
    • 제34권6_1호
    • /
    • pp.941-951
    • /
    • 2018
  • 3차원 도시모델의 생성을 위한 무인항공기의 활용 및 수요가 증가하고 있다. 본 연구에서는 3D 도시 모델 생성의 선행 연구로 불완전한 자세에서 취득된 무인항공기의 위치/자세 정보를 보정하여 포인트 클라우드를 추출하는 연구를 수행했다. 포인트 클라우드의 추출을 위해서는 정밀한 센서모델의 수립이 선행되어야 한다. 이에 무인항공기의 위치/자세 보정을 위해 무인항공기 영상에 기록된 위치정보의 연속성을 이용하여 회전각을 산출하고, 이를 초기값으로 하는 사진 측량 기반의 IBA(Incremental Bundle Adjustment)를 적용하여 보정된 위치/자세 정보를 획득했다. 센서모델 정보를 통해 스테레오 페어 구성이 가능한 영상들을 자동으로 선별하고 페어간의 타이포인트 정보를 이용해 원본 영상을 에피폴라 영상으로 변환했으며, 변환된 에피폴라 스테레오 영상은 고속, 고정밀의 영상 정합기법인 MDR (Multi-Dimensional Relaxation)의 적용을 통해 포인트 클라우드를 추출했다. 각 페어에서 추출된 개별 포인트 클라우드는 집성 과정을 거쳐 하나의 포인트 클라우드 혹은 DSM의 최종 산출물 형태로 출력된다. 실험은 DJI社 무인항공기에서 취득된 연직 및 경사 촬영 영상을 사용했으며, 실험을 통해 건물의 난간, 벽면 등이 선명하게 표현되는 포인트 클라우드 추출이 가능함을 확인하였다. 향후에는 추출된 포인트 클라우드를 이용한 3차원 건물 추출 연구를 통해 3차원 도시모델의 생성을 위한 영상 처리기술을 계속 발전시켜나가야 할 것이다.

템플릿 매칭과 부분 워핑을 이용한 효율적인 원근 영상 워핑 기법 (Efficient Image Warping Mechanism Using Template Matching and Partial Warping)

  • 정대헌;조태훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.339-342
    • /
    • 2017
  • 이미지의 기하학적 변형은 이미지 보정을 위해 사용되며 컴퓨터 비전 분야에서 강체 변환, 유사변환 등 많은 방법이 존재한다. 그 중에서도 워핑은 원근감이 있는 이미지에서 많이 활용되는 이미지 보정 방법이다. 일반적으로 워핑을 수행하기 위해서는 워핑할 위치에 대한 특징 점 4개를 추출해 워핑을 수행한다. 그러나 워핑 지점을 정확한 추출이 어려우며, 추출된 4개의 점을 이용해 원근 영상 보정을 할 경우 원본 이미지와 보정 후 영상과의 특정 부분 픽셀이 3~4픽셀 이상으로 오차가 나타나게 된다. 그렇기 때문에 본 논문에서는 정확한 워핑 결과를 가져오기 위해 템플릿 매칭을 이용해 워핑 할 부분의 4개점을 보다 정확하게 추출하고, 추출된 4개점들 중 2개의 점 각각에 대해 주변 3 by 3 영역으로 점을 이동 시켜 총 81번의 반복을 워핑 통해 이미지 보정하는 형태이다. 이와 같이 2개의 점을 주변 3 by 3 위치로 이동 시키면서 오차 픽셀이 1픽셀 이하로 나는 최적의 위치 즉, 최적 결과를 가져오는 4개의 점을 선정한 후 그 점들로 이미지 보정을 진행하여 최적의 결과를 가져올 수 있다.

  • PDF

The Development of Multi-view point Image Interpolation Method Using Real-image

  • Yang, Kwang-Won;Park, Young-Bin;Huh, Kyung-Bin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.129.1-129
    • /
    • 2001
  • In this paper, we present an approach for matching images from finding interesting points and applying new image interpolation algorithm. New algorithms are developed that automatically align the input images match them and reconstruct 3-D surfaces. The interpolation algorithm is designed to cope with simple shapes. The proposed image interpolation algorithm generate a rotation image about vertical axes by an any angle from 4 base images. Each base image that was obtained from CCD camera has an angle difference of 90$^{\circ}$ The proposed image interpolation algorithm use the geometric analysis of image and depth information.

  • PDF

OpenCV를 활용한 이미지 유사성 비교 시스템 (The Similarity of the Image Comparison System utilizing OpenCV)

  • 반태학;방진숙;육정수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.834-835
    • /
    • 2016
  • 최근 들어 IT기술의 발전은 급속도로 성장하고 있다. 이에 따라 실시간 이미지 프로세싱 및 여러 플랫폼의 호환성을 제공하는 OpenCV를 활용한 이미지 처리 기술들에 대한 연구도 활발히 진행 중에 있다. 현재, 서로 다른 이미지를 비교, 유사성을 판별하는 시스템은 일치율이 낮거나, 사람이 아날로그적인 수치를 이용하여 판별하는 시스템이 대부분이다. 본 논문에서는 OpenCV의 Template Matching과 Feature Matching을 활용하여 서로 다른 이미지 간 유사성을 디지털 값으로 판별하는 시스템에 대해 연구한다. 이미지 스크린 중 비교점을 특정하여 피처를 추출, 서로 상이한 크기에서도 동일한 피처로 인식하여 비교대상 이미지의 피처셋과 비교하여 유서성을 비교, 검증하게 된다. 이는 음성 및 영상 인식 및 분석, 처리기술에서 보다 정확인 일치율 판독이 가능하다. 향후 법의학 및 OpenCV외의 이미지 처리기술에 대한 연구가 필요할 것으로 사료된다.

  • PDF

특징점 추적을 통한 다수 영상의 고속 스티칭 기법 (Fast Stitching Algorithm by using Feature Tracking)

  • 박시영;김종호;유지상
    • 방송공학회논문지
    • /
    • 제20권5호
    • /
    • pp.728-737
    • /
    • 2015
  • 스티칭 기법은 여러 영상에서 추출한 특징점의 디스크립터를 생성하고, 특징점들간의 정합 과정을 통해 하나의 영상으로 만드는 것이다. 각각의 특징점은 128 차원의 정보를 가지고 있고, 특징점의 개수가 증가 할수록 데이터 처리 시간이 증가하게 된다. 본 논문에서는 비디오 영상을 입력 했을 때 고속 파노라마 생성을 위한 특징점 추출 및 정합 기법을 제안한다. 빠른 속도로 특징점 추출을 위해서 FAST(Features from Accelerated Segment Test) 기법을 사용한다. 특징점 정합과정은 기존의 방법과는 다른 새로운 방법을 제안한다. Mean shift를 통해 특징점이 포함된 영역을 추적하여 벡터(vector)를 구하고 이 벡터를 사용하여 추출한 특징점들을 정합하는데 사용한다. 마지막으로 이상점(outlier)을 제거하기 위해 RANSAC(RANdom Sample Consensus) 기법을 사용한다. 입력된 두 영상의 호모그래피(homography) 변환 행렬을 구하여 하나의 파노라마 영상을 생성한다. 실험을 통해 제안하는 기법이 기존의 기법보다 속도가 향상되는 것을 확인하였다.

변형된 블록 정합을 이용한 이미지 모자이킹 (Image Mosaicing using Modified Block Matching Algorithm)

  • 김대현;윤용인;최종수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.393-396
    • /
    • 2000
  • 본 논문에서는 영상의 화소값으로부터 추출된 유사 특징점(quasi-feature point)을 이용한 이미지 모자이킹 알고리즘을 제안한다. 유사 특징점의 선택은 전역 정합(global matching)의 결과로부터 중첩된 영역을 4개의 부영역(sub-area)으로 분할하고, 각각의 분할된 부 영역에서 국부 분산(local variance)의 크기가 큰 블록을 선정, 이 블록의 중심 화소를 유사 특징점으로 선택한다. 유사 특징점에 대한 정합은 카메라 이동에 따른 왜곡(distortion)과 조명의 변화를 고려한 블록 정합 알고리즘(block matching algorithm)을 이용한다.

  • PDF

스크린 이미지 매칭을 위한 Faster D2-Net (Faster D2-Net for Screen Image Matching)

  • 전혜원;한성수;정창성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.429-432
    • /
    • 2021
  • 스마트 기기와 애플리케이션의 테스트를 위해 빠르고 정확하게 스마트 기기 화면 상에서 테스트가 필요한 위치를 추출해야 한다. 필요한 위치를 추출할 때 스마트 기기 화면과 테스트할 수 있는 영역의 매칭 방식을 사용하는데 이를 위해 이미지의 변형이 발생해도 원하는 영역의 matching point 을 빠르고 정확하게 추출하는 feature matching 방식의 D2-Net 의 feature extraction 모델과 fitting algorithm 을 변경하였다.

타원체 모델과 깊이값 포인트 매칭 기법을 활용한 사람 움직임 추적 기술 (Human Motion Tracking based on 3D Depth Point Matching with Superellipsoid Body Model)

  • 김남규
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권2호
    • /
    • pp.255-262
    • /
    • 2012
  • 사람 움직임 추적 알고리즘은 인간과 컴퓨터 상호작용, 화상회의, 감시 시스템, 게임 및 엔터테인먼트 분야에서 반드시 필요한 기술로 인식되고 있다. 과거 다양한 사람 움직임 추적 알고리즘들이 응용 프로그램의 특성에 따라 구현되고, 실시간성을 고려한 보다 효율적인 영상 처리, 컴퓨터 비전, 인터페이스 기술들을 적용하여 구현되고 있다. 본 논문에서는 타원체 형태의 신체 모델과 깊이값 정보를 갖는 3차원 점들과의 매칭을 통해 실시간으로 적용 가능한 움직임 추적 기술을 소개한다. 움직임 추적을 위한 기반 모델은 사람의 모습과 유사한 형태의 타원체 조합의 18개의 관절을 갖는 형태로 구성되어 지며, 영상으로부터 들어온 사람의 모습을 분석하여 일련의 신체 부위를 나누고, 그 정보를 바탕으로 역기구학 기반의 초기 자세를 추출한다. 초기 자세는 3차원 점 매칭 기법을 활용하여 보다 정확한 자세로 수정된다.