In this paper, we propose a application of conditional generative adversarial network (cGAN) for generation of contrast enhanced computed tomography (CT) image. Two types of CT data which were the enhanced and non-enhanced were used and applied by the histogram equalization for adjusting image intensities. In order to validate the generation of contrast enhanced CT data, the structural similarity index measurement (SSIM) was performed. Prepared generated contrast CT data were analyzed the statistical analysis using paired sample t-test. In order to apply the optimized algorithm for the lymph node cancer, they were calculated by short to long axis ratio (S/L) method. In the case of the model trained with CT data and their histogram equalized SSIM were $0.905{\pm}0.048$ and $0.908{\pm}0.047$. The tumor S/L of generated contrast enhanced CT data were validated similar to the ground truth when they were compared to scanned contrast enhanced CT data. It is expected that advantages of Generated contrast enhanced CT data based on deep learning are a cost-effective and less radiation exposure as well as further anatomical information with non-enhanced CT data.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권7호
/
pp.1794-1806
/
2023
This study presents a method for capturing photographs of users as input and converting them into 2D character animation sprites using a generative adversarial network-based artificial intelligence network. Traditionally, 2D character animations have been created by manually creating an entire sequence of sprite images, which incurs high development costs. To address this issue, this study proposes a technique that combines motion videos and sample 2D images. In the 2D sprite generation process that uses the proposed technique, a sequence of images is extracted from real-life images captured by the user, and these are combined with character images from within the game. Our research aims to leverage cutting-edge deep learning-based image manipulation techniques, such as the GAN-based motion transfer network (impersonator) and background noise removal (U2 -Net), to generate a sequence of animation sprites from a single image. The proposed technique enables the creation of diverse animations and motions just one image. By utilizing these advancements, we focus on enhancing productivity in the game and animation industry through improved efficiency and streamlined production processes. By employing state-of-the-art techniques, our research enables the generation of 2D sprite images with various motions, offering significant potential for boosting productivity and creativity in the industry.
International Journal of Advanced Culture Technology
/
제11권4호
/
pp.346-351
/
2023
With the rapid development of Artificial Intelligence (AI) technology, there is an increasing variety of methods for creating 3D models. These include innovations such as text-only generation, 2D images to 3D models, and combining images with cue words. Each of these methods has unique advantages, opening up new possibilities in the field of 3D modeling. The purpose of this study is to explore and summarize these methods in-depth, providing researchers and practitioners with a comprehensive perspective to understand the potential value of these methods in practical applications. Through a comprehensive analysis of pure text generation, 2D images to 3D models, and images with cue words, we will reveal the advantages and disadvantages of the various methods, as well as their applicability in different scenarios. Ultimately, this study aims to provide a useful reference for the future direction of AI modeling and to promote the innovation and progress of 3D model generation technology.
본 논문에서는 표본 기반 영상 인페인팅을 이용하여 틀린그림찾기 게임의 컨텐츠를 자동으로 생성하는 방법을 제안한다. 틀린그림찾기 게임은 원본 영상에서 특정 물체를 제거하거나 색상을 변경, 혹은 다른 물체로 대치시켜서 새로운 영상을 만든 후 두 영상의 차이점을 찾아내는 게임이다. 표본 기반 영상 인페인팅 기술은 정지 영상에서 의미가 없거나 관심 밖의 피사체를 영상에서 제거하는 역할을 한다. 본 논문에서는 표본 기반 영상 인페인팅을 이용해 물체 제거 문제를 자동화시키는 방법을 제안한다. 실제 구현 및 실험을 통해 틀린그림찾기 영상을 생성한 결과 제안하는 방법이 틀린그림찾기 컨텐츠를 자동 생성하는데 효과적임을 확인하였다.
Generative adversarial networks(GANs) have received great attention in the machine learning field for their capacity to model high-dimensional and complex data distribution implicitly and generate new data samples from the model distribution. This paper investigates the model training methodology, architecture, and various applications of generative adversarial networks. Experimental evaluation is also conducted for generating synthetic image dataset for defense using two types of GANs. The first one is for military image generation utilizing the deep convolutional generative adversarial networks(DCGAN). The other is for visible-to-infrared image translation utilizing the cycle-consistent generative adversarial networks(CycleGAN). Each model can yield a great diversity of high-fidelity synthetic images compared to training ones. This result opens up the possibility of using inexpensive synthetic images for training neural networks while avoiding the enormous expense of collecting large amounts of hand-annotated real dataset.
최근 안경을 쓰지 않고 3차원 입체 영상을 볼 수 있는 무안경식 3차원 디스플레이 중에서 DIBR(Depth-Image-Based Rendering) 기반의 중간 영상을 생성하는 연구가 많이 진행되고 있다. DIBR 기반의 중간 영상 생성 방법은 정확한 깊이 정보를 요구하기 때문에 기존의 연구에서는 고가의 깊이 카메라를 활용하였다. 본 연구에서는 마이크로소프트사의 키넥트 센서를 이용한 실사 영상과 깊이 영상을 기반으로 다시점 중간 영상을 생성할 수 있는 시뮬레이션 프로그램을 개발하였다. 이 시뮬레이션은 키넥트(Kinect)를 활용한 저해상도의 깊이 영상으로부터 자연스러운 다시점 영상을 획득하는 것을 목적으로 하며, 이를 위해 생성된 영상의 품질을 평가할 수 있는 기능을 통합적으로 제공한다. 본 논문에서는 이러한 시뮬레이션 프로그램의 시스템 구조와 구현에 대해서 설명한다.
The purpose of this study is to interpret the semantic actions of body image symbolized in body expression images shown by micro-influencers body profiles to understand the body profile phenomenon of the MZ generation. As a result of collecting body profile data from micro-influencers, the body profile image types of female influencers on SNS were classified into four types, Athletic, Slim body, Natural, and, Glamorous. Images representing each type were analyzed using the Roland Barthes' Myth model analysis frame. As a result of the semantic analysis, influencers were found to be very active and bold, emphasizing certain body parts according to the type of body image they pursue. Fashion is strategically used to emphasize these aspects. It was found that the ideology of a 'subjective modern woman' was commonly expressed through emphasis on visual signs. This study is meaningful in that it can indirectly lead to the understanding the fashion culture expressed by the MZ generation and provide consumer information and essential data that can be used for communication strategies in the fashion market.
This paper presents a new image cache algorithm for real-time implementation of high-resolution color image warping. The cache memory is divided into four cache memory modules for simultaneous readout of four input image pixels in consideration of the color filter array (CFA) pattern of an image sensor and CFA image warping. In addition, a pipeline structure from the cache memory to an interpolator is shown to guarantee the generation of an output image pixel at each system clock cycle. The proposed image cache algorithm is applied to an FPGA-based real-time color image warping, and experimental results are presented to show the validity of the proposed method.
본 논문에서는 조영증강 초음파 진단시스템에서 유용성과 성능을 개선하기 위한 영상처리 기법을 제안한다. 의료초음파 영상에서 진단 파라미터 데이터를 가시화 하는 방법론으로서 연속적인 픽셀 값을 갖는 전이시간 데이터의 표현과, 4가지 유형의 값으로 분류되는 병변 진단 파라미터 영상을 생성하는 방법을 제시한다. 또한 생성된 파라미터 영상에서 노이즈를 제거하기 위한 방법론으로서 MRF 모델을 이용한 영상개선 기법을 제안한다. 이러한 파라미터 영상 생성기법은 초음파 진단 데이터에서 조영증강 패턴의 동적인 변화에 대한 육안 판별의 한계를 극복할 수 있게 한다. 제안된 방법은 원영상에서 영역의 윤곽선을 명확하게 하며 4가지 색상을 통하여 병변의 특성에 관한 시각적 판단을 용이하게 한다. MRF기반 영상개선 과정에서 연속적인 픽셀 값에 대한 에너지함수를 정의하고 이를 최적화 하는 기법을 개발하였으며 실제 의료영상을 사용한 실험을 통하여 제안된 이론의 유용성을 평가하였다.
최근 영상 데이터의 효율적인 표현 및 처리를 위해 텐서를 사용하는 연구가 관심을 모으고 있다. 본 연구에서는 2차 텐서로 표현된 데이터를 효과적으로 분류하기 위한 시스템을 개발하는 것을 목적으로 한다. 이를 위해 먼저 일반적인 벡터 데이터에 대해 개발되어진 클래스 요인과 환경 요인으로 이루어진 데이터 생성 모델을 확장하여 2차 텐서로 표현된 영상에 적합한 데이터 생성 모델을 정의하고, 이에 적합한 유사도 함수를 제안하였다. 제안하는 유사도 함수는 행렬정규분포를 이용하여 환경 요인의 확률분포를 추정함으로써 얻을 수 있다. 여러 벤치마크 데이터들을 이용하여 실험한 결과 2차 텐서를 사용함으로써 벡터 형태의 표현방식을 사용하는 것에 비해 분류율이 향상되었음을 확인하였다. 또한 제안하는 유사도 함수가 다른 기존의 유사도 함수에 비해 영상 데이터에 적합함을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.