• 제목/요약/키워드: Image feature points

검색결과 537건 처리시간 0.024초

비디오 영상에서 통계적 영상특징에 의한 블록 모션 측정 (Statistical Image Feature Based Block Motion Estimation for Video Sequences)

  • Bae, Young-Lae;Cho, Dong-Uk;Chun, Byung-Tae
    • 한국콘텐츠학회논문지
    • /
    • 제3권1호
    • /
    • pp.9-13
    • /
    • 2003
  • 이 논문에서는 비디오 영상에서의 블록 모션 측정을 위한 통계학적인 특징에 기반 한 알고리즘을 제안한다. 우선 참조 블록의 통계학적인 특징을 구하고, 이를 참조 블록의 통계적 특징과 정규 시작점 패턴 (SPP) 에 퍼져 있는 블록에서의 특징을 비교하여, SPP에서의 시작점 (SP) 후보를 선택하는 데에 적용한다. 최종적인 SP 들은 SP 후보 들에서의 평균절대차이 (MAD) 값으로 구한다. 마지막으로 기존의 고속탐색 알고리즘인 BBG나 DS 그리고 TSS중 하나를 이용하여 참조블록의 모션 벡터를 최종 SP를 시작점으로 하여 계산하였다. 실험결과는 기대 했던 바와 같이 최종 SP로부터의 시작점들이 전역최소값 (global minimum)에 근접함을 보여 주었다.

  • PDF

시점 변화에 강인한 특징점 정합 기법 (Feature Matching Algorithm Robust To Viewpoint Change)

  • 정현조;유지상
    • 한국통신학회논문지
    • /
    • 제40권12호
    • /
    • pp.2363-2371
    • /
    • 2015
  • 본 논문에서는 FAST(Features from Accelerated Segment Test) 특징점 검출기와 SIFT(Scale Invariant Feature Transform) 특징점 서술자(descriptor)를 사용하여 시점 변화에 강인한 특징점 정합 기법을 제안한다. 기존의 FAST 기법은 영상의 에지 부분을 따라서 불필요하게 특징점을 많이 추출하게 되는데 이러한 단점을 주곡률(principal curvatures)을 적용하여 개선한다. 추출된 특징점을 SIFT 서술자를 통해 기술하고 시점이 다른 두 영상으부터 구해진 정합쌍에 RANSAC(RANdom SAmple Consensus) 기법을 통하여 호모그래피(homography)를 계산한다. 시점 변화에 강인한 특징점 정합을 위해서 기준 영상의 특징점들을 호모그래피 변환을 통해 변경된 좌표와 시점이 다른 영상의 특징점 좌표간의 유클리디언(Euclidean) 거리를 통해 정합쌍을 분류한다. 같은 물체나 장소에 대해 시점이 변화된 여러 영상에 대한 실험을 통해서 제안하는 정합 기법이 적은 계산량으로 기존의 특징점 정합 기법보다 우수한 성능을 보여주는 것을 확인하였다.

칼라 불변 기반의 특징점을 이용한 영상 모자이킹 (Image Mosaicking Using Feature Points Based on Color-invariant)

  • 권오설;이동창;이철희;하영호
    • 대한전자공학회논문지SP
    • /
    • 제46권2호
    • /
    • pp.89-98
    • /
    • 2009
  • 컴퓨터 비전 분야에서 영상 모자이킹 (Image Mosaicking)은 제한된 시야각의 카메라를 사용하여 획득한 여러 장의 중첩된 영역을 가지는 영상을 한 장의 영상으로 정합하여 나타내는 기법이다. 최근에는 연속된 영상에서 카메라의 기학학적인 움직임 때문에 발생하는 영상의 왜곡이나 밝기 차에 관계없이 정확한 정합을 수행하기 위해서 특징점을 기반으로 서술자를 구성하는 정합 방법이 많이 연구되고 있다. 그러나 대부분의 특징점 검출 알고리즘들은 영상의 밝기값 기반의 처리 과정을 수행하기 때문에 영상의 칼라 성분은 다르지만 밝기값이 비슷한 경우, 또는 동영상에서 시간의 흐름에 따라 광원이 변화하는 경우에는 광원의 영향에 따라 검출되는 특징점의 수와 각각의 지역 서술자의 특성이 변하여 정확한 대응점을 검출하는데 오류를 유발하게 된다. 이런 문제점을 해결하기 위해서 본 논문은 영상의 칼라 정보를 이용한 특징점 기반의 영상 모자이킹 방법을 제안하였다. 디지털 칼라 카메라로부터 획득한 디지털 값을 좁은 대역을 갖는 가상의 카메라 출력값으로 변환하여 물체의 분광 반사율 기반의 값으로 유도하고 이것을 광원의 변화에 불변하는 칼라 불변 값 (Color-Invariant Value)으로 정의하였다. 제안된 칼라 불변값의 유효성을 검증하기 위해서 시뮬레이션된 광원들과 Macbeth Color-Checker를 이용하여 확인하였으며, 실험결과에서 제안한 방법과 기존의 SIFT 알고리즘을 비교를 통해 제안된 방법의 정합율의 향상을 확인하였다.

8진트리 모델을 사용한 3D 물체 모델링과 특징점 (3D Object Modeling and Feature Points using Octree Model)

  • 이영재
    • 한국멀티미디어학회논문지
    • /
    • 제5권5호
    • /
    • pp.599-607
    • /
    • 2002
  • 8진트리 모델은 3차원 물체를 계층적으로 모델링할 수 있는 기법으로 임의의 시각 방향에서 투영영상을 생성할 수 있으므로 3차원 물체인식 등 다양한 분야에서 효율적인 데이터 베이스로 사용될 수 있다. 본 논문에서는 8진트리 모델을 사용해 투영 영상을 만들어 보고 Multi level boundary search 알고리즘을 사용해 표면 영상을 생성해 본다. 또한 2D 영상과 3D 영상의 특징점을 구하는 방법과 2D 특징점, 3D 특징점의 기하학적 변환을 통하여 유사 특징점을 찾는 방법에 대하여 언급한다. 이 방법들은 3D 물체 모델링을 위한 효율적인 데이터 베이스 구축과 물체 특징점 응용을 위한 기본 자료로 활용될 수 있다.

  • PDF

A Fast Image Matching Method for Oblique Video Captured with UAV Platform

  • Byun, Young Gi;Kim, Dae Sung
    • 한국측량학회지
    • /
    • 제38권2호
    • /
    • pp.165-172
    • /
    • 2020
  • There is growing interest in Vision-based video image matching owing to the constantly developing technology of unmanned-based systems. The purpose of this paper is the development of a fast and effective matching technique for the UAV oblique video image. We first extracted initial matching points using NCC (Normalized Cross-Correlation) algorithm and improved the computational efficiency of NCC algorithm using integral image. Furthermore, we developed a triangulation-based outlier removal algorithm to extract more robust matching points among the initial matching points. In order to evaluate the performance of the propose method, our method was quantitatively compared with existing image matching approaches. Experimental results demonstrated that the proposed method can process 2.57 frames per second for video image matching and is up to 4 times faster than existing methods. The proposed method therefore has a good potential for the various video-based applications that requires image matching as a pre-processing.

단면 윤곽선을 기반으로 한 두부표변의 재구성 (Reconstruction of Head Surface based on Cross Sectional Contours)

  • 한영환;성현경;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권4호
    • /
    • pp.365-373
    • /
    • 1997
  • 본 논문에는 표면 형태만을 고려한 방법으로 다수의 단면 영상 데이터로부터, 관심있는 기관의 외부 표면을 패치(patch)에 의한 방법으로 재구성하여 삼차원적으로 표시하는 것을 목적으로 한다. 이를 위해 본 논문에서는 표면을 형성하기 위한 특징점을 추출하기 위하여 제거법에 의한 특징점 추출이라는 알고리즘을 제안하여 사용하였으며, 표면을 재구성하기 윟나 과정에서 두 단면의 영상의 특징점 사이의 최소 거리를 비용 함수로 사용하는 방법을 제안하였다. 제안한 알고리즘의 효용성을 확인하기 위하여 두부에 대한 이차원 CT 영상을 사용하여 실험을 실시하고 다른 방법과 비교하여 보았다.

  • PDF

초음파 영상을 위한 계층적 특징점 기반 블록 움직임 추출 (Hierarchical Feature Based Block Motion Estimation for Ultrasound Image Sequences)

  • 김백섭;신성철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권4호
    • /
    • pp.402-410
    • /
    • 2006
  • 연속된 초음파 영상 시퀀스로부터 파노라마 영상을 만들기 위해서는 인접된 프레임 사이의 움직임을 추정해야 한다. 기존에는 고정 블록 움직임 추정 방법이 주로 사용되고 있는데 본 논문은 정확성을 높이고 계산시간을 단축하기 위해 다해상도 영상을 이용한 특징점 기반 블록 움직임 추정 방법을 제안한다. 기존의 블록 움직임 추정 방법은 규칙적으로 블록을 배치하기 때문에 추정된 움직임의 정확도를 높이기 위해서는 블록의 크기가 커지기 때문에 처리 시간이 오래 걸린다. 본 논문에서는 특징점을 중심으로 블록을 배치하여 움직임 추정의 정확도는 유지하면서 블록의 크기를 줄일 수 있었다. 어파츄어문제(aperture problem)을 줄이기 위해 코너점을 특징점으로 하였다. 움직임 추정 영역은 일정한 크기의 부영역으로 나누고, 각 부영역에서 가장 코너 강도가 큰 점을 선택하였다. 특징점을 선택하는 데는 해리스 스테판 코너검출기를 사용하였다. 코너점들이 한 곳으로 편중될 경우 블록들이 움직임 추정 영역에서 골고루 분산되지 않아 이렇게 구한 블록 움직임을 이용하여 전역 움직임을 구하면 오차가 커진다. 본 논문에서는 이러한 문제를 해결하기 위해 특징점을 선택하는 영역에 제한을 두도록 하였다. 초음파 영상에는 스펙클과 잡음이 많아 코너점을 구하기 전에 영상 평활화를 해야 한다. 계산시간을 줄이고 잡음이 감소된 영상에서 코너점을 구하기 위해 저해상도 영상에서 블록 움직임을 구한 후 점점 고해상도로 확산하는 형태로 다해상도 영상을 사용한다. 실제 세가지 종류의 초음파 영상 시퀀스에 대해 실험결과 제안된 방법은 기존의 방법에 비해 움직임 추정 오차(Displaced Frame Difference)를 평균 66.02에서 58.98로 줄이면서 계산시간은 평균 71ms에서 44ms 으로 빠르게 됨을 알 수 있었다.

일방향 순차층위 스네이크 모델에 의한 디지털영상의 특징점 추적 (Feature Points Tracking of Digital Image By One-Directional Iterating Layer Snake Model)

  • 황중원;황재호
    • 대한전자공학회논문지SP
    • /
    • 제44권4호통권316호
    • /
    • pp.86-92
    • /
    • 2007
  • 2D 영상의 특징점을 추적하는 이산동적 모델을 고안한다. 종래의 스네이크 접근은 내외 추진력으로 구성된 에너지함수를 최소화하도록 구획을 변형시켜가면서 영상 내의 원하는 특징에 밀착시켜간다. 이 때 스네이크화소를 중심한 인접화소군은 사각형 같은 평면 2차 행렬이다. 본 논문에서는 유사 특성점들을 상호 연결하는 모델 구조를 제시한다. 에너지모델은 그 국부최소점이 활성처리에 유용한 교차 해법에 적합하도록 설계한다. 추적시 선 형태의 1차 행렬 블록을 사용한다. 진행 방향의 반대 끝 라인으로부터 굴곡상태를 만족하는 시발점들을 선정하고 에너지 최소처리를 통해 이웃 라인으로 순차 자동 이동한다. 추적 경로는 상승 하강점 또는 극대 극소점과 같은 굴곡 한계에 의존한다. 이와 같은 층위적 접근은 인접데이터 라인 사이에 수직 또는 수평 방향으로 높은 상관성을 갖는 일방향 특성이 있는 디지털 영상의 특징점 추적에 유용하다. 그리고 인체 경동맥초음파영상에서 그 내 외막 시점을 추적하는 실험으로 알고리즘의 효과를 확인하였다.

스케일 스페이스 특징점을 이용한 영상 워터마킹 (Image Watermarking Based on Feature Points of Scale-Space Representation)

  • 서진수;유창동
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.367-370
    • /
    • 2005
  • This paper proposes a novel method for content-based watermarking based on feature points of an image. At each feature point, watermark is embedded after affine normalization according to the local characteristic scale and orientation. The characteristic scale is the scale at which the normalized scale-space representation of an image attains a maximum value, and the characteristic orientation is the angle of the principal axis of an image. By binding watermarking with the local characteristics of an image, resilience against affine transformations can be obtained. Experimental results show that the proposed method is robust against various image processing steps including affine transformations, cropping, filtering, and JPEG compression.

  • PDF

An Efficient Feature Point Extraction Method for 360˚ Realistic Media Utilizing High Resolution Characteristics

  • Won, Yu-Hyeon;Kim, Jin-Sung;Park, Byuong-Chan;Kim, Young-Mo;Kim, Seok-Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.85-92
    • /
    • 2019
  • In this paper, we propose a efficient feature point extraction method that can solve the problem of performance degradation by introducing a preprocessing process when extracting feature points by utilizing the characteristics of 360-degree realistic media. 360-degree realistic media is composed of images produced by two or more cameras and this image combining process is accomplished by extracting feature points at the edges of each image and combining them into one image if they cover the same area. In this production process, however, the stitching process where images are combined into one piece can lead to the distortion of non-seamlessness. Since the realistic media of 4K-class image has higher resolution than that of a general image, the feature point extraction and matching process takes much more time than general media cases.