• Title/Summary/Keyword: Image extraction

Search Result 2,625, Processing Time 0.033 seconds

Framework for Content-Based Image Identification with Standardized Multiview Features

  • Das, Rik;Thepade, Sudeep;Ghosh, Saurav
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.174-184
    • /
    • 2016
  • Information identification with image data by means of low-level visual features has evolved as a challenging research domain. Conventional text-based mapping of image data has been gradually replaced by content-based techniques of image identification. Feature extraction from image content plays a crucial role in facilitating content-based detection processes. In this paper, the authors have proposed four different techniques for multiview feature extraction from images. The efficiency of extracted feature vectors for content-based image classification and retrieval is evaluated by means of fusion-based and data standardization-based techniques. It is observed that the latter surpasses the former. The proposed methods outclass state-of-the-art techniques for content-based image identification and show an average increase in precision of 17.71% and 22.78% for classification and retrieval, respectively. Three public datasets - Wang; Oliva and Torralba (OT-Scene); and Corel - are used for verification purposes. The research findings are statistically validated by conducting a paired t-test.

Distance Extraction by Means of Photon-Counting Passive Sensing Combined with Integral Imaging

  • Yeom, Seok-Won;Woo, Yong-Hyen;Baek, Won-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.357-361
    • /
    • 2011
  • Photon-counting sensing is a widely used technique for low-light-level imaging applications. This paper proposes a distance information extraction method with photon-counting passive sensing under low-lightlevel conditions. The photo-counting passive sensing combined with integral imaging generates a photon-limited elemental image array. Maximum-likelihood estimation (MLE) is used to reconstruct the photon-limited image at certain depth levels. The distance information is extracted at the depth level that minimizes the sum of the standard deviation of the corresponding photo-events in the elemental image array. Experimental and simulation results confirm that the proposed method can extract the distance information of the object under low-light-level conditions.

Emotion Detection Algorithm Using Frontal Face Image

  • Kim, Moon-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2373-2378
    • /
    • 2005
  • An emotion detection algorithm using frontal facial image is presented in this paper. The algorithm is composed of three main stages: image processing stage and facial feature extraction stage, and emotion detection stage. In image processing stage, the face region and facial component is extracted by using fuzzy color filter, virtual face model, and histogram analysis method. The features for emotion detection are extracted from facial component in facial feature extraction stage. In emotion detection stage, the fuzzy classifier is adopted to recognize emotion from extracted features. It is shown by experiment results that the proposed algorithm can detect emotion well.

  • PDF

A Method for Caption Segmentation using Minimum Spanning Tree

  • Chun, Byung-Tae;Kim, Kyuheon;Lee, Jae-Yeon
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.906-909
    • /
    • 2000
  • Conventional caption extraction methods use the difference between frames or color segmentation methods from the whole image. Because these methods depend heavily on heuristics, we should have a priori knowledge of the captions to be extracted. Also they are difficult to implement. In this paper, we propose a method that uses little heuristics and simplified algorithm. We use topographical features of characters to extract the character points and use KMST(Kruskal minimum spanning tree) to extract the candidate regions for captions. Character regions are determined by testing several conditions and verifying those candidate regions. Experimental results show that the candidate region extraction rate is 100%, and the character region extraction rate is 98.2%. And then we can see the results that caption area in complex images is well extracted.

  • PDF

Road Extraction Based on Watershed Segmentation for High Resolution Satellite Images

  • Chang, Li-Yu;Chen, Chi-Farn
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.525-527
    • /
    • 2003
  • Recently, the spatial resolution of earth observation satellites is significantly increased to a few meters. Such high spatial resolution images definitely will provide lots of information for detail-thirsty remote sensing users. However, it is more difficult to develop automated image algorithms for automated image feature extraction and pattern recognition. In this study, we propose a two-stage procedure to extract road information from high resolution satellite images. At first stage, a watershed segmentation technique is developed to classify the image into various regions. Then, a knowledge is built for road and used to extract the road regions. In this study, we use panchromatic and multi-spectral images of the IKONOS satellite as test dataset. The experiment result shows that the proposed technique can generate suitable and meaningful road objects from high spatial resolution satellite images. Apparently, misclassified regions such as parking lots are recognized as road needed further refinement in future research.

  • PDF

Character recognition using Hough transform (Hough변환을 이용한 문자인식)

  • 강선미;김봉석;황승옥;양윤모;김덕진
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.77-80
    • /
    • 1991
  • This paper proposes a new feature extraction method which is effectively used in character recognition, and validate the effectiveness through various computational methods for similiarity degree. To get feature vectors used in this method, Hough transform is applied to character image, which is used for edge extraction in image processing. By that transformation technique, strokes could be extracted and feature vectors constructed suitably. The characteristic of this method is solving the difficulties in stroke extraction through transform space analysis, which is induced by noise and blurring, and representing high recognition rate 99.3% within 10 candidates in relative low dimension.

Character Region Extraction of Monumental Inscription Image Using Boundary Information (윤곽선 정보를 이용한 금석문 영상의 글자 영역 추출)

  • 최호형;박영식;김기석
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.118-121
    • /
    • 2002
  • The study on shilla monumental inscription has been accomplished by many historians. However, the research on segmentation of monumental inscription image using digital image processing is not sufficient for restoration of the image. Although, many image processing methods have been proposed for region extraction in still image, there is no suitable method for accurate interpretation of monumental inscription image. To distinguish foreground and background region in the image, this paper presents new segmentation algorithm composed of contrast adjustment and median filtering, thresholding and sobel operation, as pre-processing and post-processing. The result show that background and foreground regions are segmented in monumental inscription image.

  • PDF

Deep Reference-based Dynamic Scene Deblurring

  • Cunzhe Liu;Zhen Hua;Jinjiang Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.653-669
    • /
    • 2024
  • Dynamic scene deblurring is a complex computer vision problem owing to its difficulty to model mathematically. In this paper, we present a novel approach for image deblurring with the help of the sharp reference image, which utilizes the reference image for high-quality and high-frequency detail results. To better utilize the clear reference image, we develop an encoder-decoder network and two novel modules are designed to guide the network for better image restoration. The proposed Reference Extraction and Aggregation Module can effectively establish the correspondence between blurry image and reference image and explore the most relevant features for better blur removal and the proposed Spatial Feature Fusion Module enables the encoder to perceive blur information at different spatial scales. In the final, the multi-scale feature maps from the encoder and cascaded Reference Extraction and Aggregation Modules are integrated into the decoder for a global fusion and representation. Extensive quantitative and qualitative experimental results from the different benchmarks show the effectiveness of our proposed method.

3D BUILDING INFORMATION EXTRACTION FROM A SINGLE QUICKBIRD IMAGE

  • Kim, Hye-Jin;Han, Dong-Yeob;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.409-412
    • /
    • 2006
  • Today's commercial high resolution satellite imagery such as IKONOS and QuickBird, offers the potential to extract useful spatial information for geographical database construction and GIS applications. Recognizing this potential use of high resolution satellite imagery, KARI is performing a project for developing Korea multipurpose satellite 3(KOMPSAT-3). Therefore, it is necessary to develop techniques for various GIS applications of KOMPSAT-3, using similar high resolution satellite imagery. As fundamental studies for this purpose, we focused on the extraction of 3D spatial information and the update of existing GIS data from QuickBird imagery. This paper examines the scheme for rectification of high resolution image, and suggests the convenient semi-automatic algorithm for extraction of 3D building information from a single image. The algorithm is based on triangular vector structure that consists of a building bottom point, its corresponding roof point and a shadow end point. The proposed method could increase the number of measurable building, and enhance the digitizing accuracy and the computation efficiency.

  • PDF

Morphological Feature Extraction of Microorganisms Using Image Processing

  • Kim Hak-Kyeong;Jeong Nam-Su;Kim Sang-Bong;Lee Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • This paper describes a procedure extracting feature vector of a target cell more precisely in the case of identifying specified cell. The classification of object type is based on feature vector such as area, complexity, centroid, rotation angle, effective diameter, perimeter, width and height of the object So, the feature vector plays very important role in classifying objects. Because the feature vectors is affected by noises and holes, it is necessary to remove noises contaminated in original image to get feature vector extraction exactly. In this paper, we propose the following method to do to get feature vector extraction exactly. First, by Otsu's optimal threshold selection method and morphological filters such as cleaning, filling and opening filters, we separate objects from background an get rid of isolated particles. After the labeling step by 4-adjacent neighborhood, the labeled image is filtered by the area filter. From this area-filtered image, feature vector such as area, complexity, centroid, rotation angle, effective diameter, the perimeter based on chain code and the width and height based on rotation matrix are extracted. To prove the effectiveness, the proposed method is applied for yeast Zygosaccharomyces rouxn. It is also shown that the experimental results from the proposed method is more efficient in measuring feature vectors than from only Otsu's optimal threshold detection method.

  • PDF