• Title/Summary/Keyword: Image edge extraction

Search Result 335, Processing Time 0.024 seconds

Head Pose Estimation with Accumulated Historgram and Random Forest (누적 히스토그램과 랜덤 포레스트를 이용한 머리방향 추정)

  • Mun, Sung Hee;Lee, Chil woo
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • As smart environment is spread out in our living environments, the needs of an approach related to Human Computer Interaction(HCI) is increases. One of them is head pose estimation. it related to gaze direction estimation, since head has a close relationship to eyes by the body structure. It's a key factor in identifying person's intention or the target of interest, hence it is an essential research in HCI. In this paper, we propose an approach for head pose estimation with pre-defined several directions by random forest classifier. We use canny edge detector to extract feature of the different facial image which is obtained between input image and averaged frontal facial image for extraction of rotation information of input image. From that, we obtain the binary edge image, and make two accumulated histograms which are obtained by counting the number of pixel which has non-zero value along each of the axes. This two accumulated histograms are used to feature of the facial image. We use CAS-PEAL-R1 Dataset for training and testing to random forest classifier, and obtained 80.6% accuracy.

Deskewing Document Image using the Gradient of the Spaces Between Sentences. (문장 사이의 공백 기울기를 이용한 문서 이미지 기울기 보정)

  • Heo, Woo-hyung;Gu, Eun-jin;Kim, Cheol-ki;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.379-381
    • /
    • 2013
  • In this paper, we propose a method to detect the gradient of the spaces between sentences and to deskew in the document image. First, gradient is measured by pixels for spaces between sentences that has been done an edge extraction in document image and then skewed image is corrected by using the value of the gradient which has been measured. Since document image is divided into several areas, it shows a robust processing result by handling the margin, images, and multistage form in the document. Because the proposed method does not use pixel of the character region but use the blank area, degraded document image as well as vivid document image is effectively corrected than conventional method.

  • PDF

Image Segmentation Algorithm for Fish Object Extraction (어류객체 추출을 위한 영상분할 알고리즘)

  • Ahn, Soo-Hong;Oh, Jeong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1819-1826
    • /
    • 2010
  • This paper proposes the image segmentation algorithm to extracts a fish object from a fish image for fish image retrieval. The conventional algorithm using gray level similarity causes wrong image segmentation result in the boundary area of the object and the background with similar gray level. The proposed algorithm uses the reinforced edge and the adaptive block-based threshold for the boundary area with weak contrast and the virtual object to improve the eroded or disconnected object in the boundary area without contrast. The simulation results show that the percentage of extracting the visual-fine object from the test images is under 90% in the conventional algorithm while it is 97.7% in the proposed algorithms.

Patent Image Retrieval Using SURF Direction histograms (SURF 방향 히스토그램을 이용한 특허 영상 검색)

  • Yoo, Ju-Hee;Lee, Kyoung-Mi
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.33-43
    • /
    • 2015
  • Recently, patent images are growing importance and thus patent image retrieval is a growing area of research. However, most existing patent image retrieval systems use edges extracted in the images, whose performance is affected by the quality of edge detection in the image pre-processing step. To overcome this disadvantage, we propose a SURF-based patent image retrieval method which uses the morphological characteristics of the images. The proposed method detects SURF interest points with directions and computes regional histograms. We apply the proposed method to a patent image database with 2000 binary images and we show the proposed retrieval system achieves excellent results, even when the images have some loss or degradation.

An Extracting Text Area Using Adaptive Edge Enhanced MSER in Real World Image (실세계 영상에서 적응적 에지 강화 기반의 MSER을 이용한 글자 영역 추출 기법)

  • Park, Youngmok;Park, Sunhwa;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.17 no.4
    • /
    • pp.219-226
    • /
    • 2016
  • In our general life, what we recognize information with our human eyes and use it is diverse and massive. But even the current technologies improved by artificial intelligence are exorbitantly deficient comparing to human visual processing ability. Nevertheless, many researchers are trying to get information in everyday life, especially concentrate effort on recognizing information consisted of text. In the fields of recognizing text, to extract the text from the general document is used in some information processing fields, but to extract and recognize the text from real image is deficient too much yet. It is because the real images have many properties like color, size, orientation and something in common. In this paper, we applies an adaptive edge enhanced MSER(Maximally Stable Extremal Regions) to extract the text area in those diverse environments and the scene text, and show that the proposed method is a comparatively nice method with experiments.

Region Extraction Methodology Using Edge Values of Image (이미지 경계값을 이용한 영역 추출 방법)

  • 이승재;김창화
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.449-451
    • /
    • 2000
  • 본 논문에서는 내용기반 이미지 검색 시스템을 제작하기 위하여 필수적으로 선행되어야 하는 이미지의 영역구분에 대한 새로운 방법인 경계값을 이용한 영역추출 방법을 소개한다. 빠르고 정확한 이미지 검색엔진을 구현하기 위하여 질의의 결과가 될 이미지들은 전처리기에 의하여 모든 영역을 추출한 뒤 각각의 영역에 따른 특성(feature)를 저장하고 있어야 한다. 정확한 질의 결과를 얻기 위하여는 정확히 영역을 추출할 수 있고 그 특성도 추출할 수 있는 전처리기를 사용하여야 한다. 또한 정확도만을 중시하여 너무 복잡한 알고리즘을 사용한다면 그 또한 실용적이지 못하게 된다. 경계값을 이용한 영역추출 방법은 이미지의 각 점에 대한 경계값(edge value)을 이용하여 그 경계값이 작은 점으로부터 시작하여 경계값이 큰 점들을 병합해 가면서 인접한 영역간의 크기, 색상 등을 고려하여 각각의 영역을 구분해 낸다. 이 방법의 가장 큰 특징은 텍스쳐(texture)를 제외한 일반적인 영역뿐 아니라 텍스쳐 포함하는 영역도 추출할 수 있는 점과 빠른 처리 속도에 있다.

  • PDF

Car Identification Using Comparing Car Size (크기 비교를 통한 차량 식별)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.488-489
    • /
    • 2019
  • We propose a method to identify vehicle type by the formula of distance between feature points of vehicle and proportional rate of size. Car images are converted from the basic RGB model to the gray color model. Perform Canny Edge Direction to remove the background image of the car. The desired feature points are obtained through contour extraction.

  • PDF

Method of Human Detection using Edge Symmetry and Feature Vector (에지 대칭과 특징 벡터를 이용한 사람 검출 방법)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.57-66
    • /
    • 2011
  • In this paper, it is proposed for algorithm to detect human efficiently using a edge symmetry and gradient directional characteristics in realtime by the feature extraction in a single input image. Proposed algorithm is composed of three stages, preprocessing, region partition of human candidates, verification of candidate regions. Here, preprocessing stage is strong the image regardless of the intensity and brightness of surrounding environment, also detects a contour with characteristics of human as considering the shape features size and the condition of human for characteristic of human. And stage for region partition of human candidates has separated the region with edge symmetry for human and size in the detected contour, also divided 1st candidates region with applying the adaboost algorithm. Finally, the candidate region verification stage makes excellent the performance for the false detection by verifying the candidate region using feature vector of a gradient for divided local area and classifier. The results of the simulations, which is applying the proposed algorithm, the processing speed of the proposed algorithms is improved approximately 1.7 times, also, the FNR(False Negative Rate) is confirmed to be better 3% than the conventional algorithm which is a single structure algorithm.

Mobile Phone Camera Based Scene Text Detection Using Edge and Color Quantization (에지 및 컬러 양자화를 이용한 모바일 폰 카메라 기반장면 텍스트 검출)

  • Park, Jong-Cheon;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.847-852
    • /
    • 2010
  • Text in natural images has a various and important feature of image. Therefore, to detect text and extraction of text, recognizing it is a studied as an important research area. Lately, many applications of various fields is being developed based on mobile phone camera technology. Detecting edge component form gray-scale image and detect an boundary of text regions by local standard deviation and get an connected components using Euclidean distance of RGB color space. Labeling the detected edges and connected component and get bounding boxes each regions. Candidate of text achieved with heuristic rule of text. Detected candidate text regions was merged for generation for one candidate text region, then text region detected with verifying candidate text region using ectilarity characterization of adjacency and ectilarity between candidate text regions. Experctental results, We improved text region detection rate using completentary of edge and color connected component.

Land cover classification of a non-accessible area using multi-sensor images and GIS data (다중센서와 GIS 자료를 이용한 접근불능지역의 토지피복 분류)

  • Kim, Yong-Min;Park, Wan-Yong;Eo, Yang-Dam;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.493-504
    • /
    • 2010
  • This study proposes a classification method based on an automated training extraction procedure that may be used with very high resolution (VHR) images of non-accessible areas. The proposed method overcomes the problem of scale difference between VHR images and geographic information system (GIS) data through filtering and use of a Landsat image. In order to automate maximum likelihood classification (MLC), GIS data were used as an input to the MLC of a Landsat image, and a binary edge and a normalized difference vegetation index (NDVI) were used to increase the purity of the training samples. We identified the thresholds of an NDVI and binary edge appropriate to obtain pure samples of each class. The proposed method was then applied to QuickBird and SPOT-5 images. In order to validate the method, visual interpretation and quantitative assessment of the results were compared with products of a manual method. The results showed that the proposed method could classify VHR images and efficiently update GIS data.