• Title/Summary/Keyword: Image edge density

Search Result 45, Processing Time 0.019 seconds

Simulation and Measurement of Signal Intensity for Various Tissues near Bone Interface in 2D and 3D Neurological MR Images (2차원과 3차원 신경계 자기공명영상에서 뼈 주위에 있는 여러 조직의 신호세기 계산 및 측정)

  • Yoo, Done-Sik
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.33-40
    • /
    • 1999
  • Purpose: To simulate and measure the signal intensity of various tissues near bone interface in 2D and 3D neurological MR images. Materials and Methods: In neurological proton density (PD) weighted images, every component in the head including cerebrospinal fluid (CSF), muscle and scalp, with the exception of bone, are visualised. It is possible to acquire images in 2D or 3D. A 2D fast spin-echo (FSE) sequence is chosen for the 2D acquisition and a 3D gradient-echo (GE) sequence is chosen for the 3D acquisition. To find out the signal intensities of CSF, muscle and fat (or scalp) for the 2D spin-echo(SE) and 3D gradient-echo (GE) imaging sequences, the theoretical signal intensities for 2D SE and 3D GE were calculated. For the 2D fast spin-echo (FSE) sequence, to produce the PD weighted image, long TR (4000 ms) and short TE$_{eff}$ (22 ms) were employed. For the 3D GE sequence, low flip angle (8$^{\circ}$) with short TR (35 ms) and short TE (3 ms) was used to produce the PD weighted contrast. Results: The 2D FSE sequence has CSF, muscle and scalp with superior image contrast and SNR of 39 - 57 while the 3D GE sequence has CSF, muscle and scalp with broadly similar image contrast and SNR of 26 - 33. SNR in the FSE image were better than those in the GE image and the skull edges appeared very clearly in the FSE image due to the edge enhancement effect in the FSE sequence. Furthermore, the contrast between CSF, muscle and scalp in the 2D FSE image was significantly better than in the 3D GE image, due to the strong signal intensities (or SNR) from CSF, muscle and scalp and enhanced edges of CSF. Conclusion: The signal intensity of various tissues near bone interface in neurological MR images has been simulated and measured. Both the simulation and imaging of the 2D SE and 3D GE sequences have CSF, fat and muscle with broadly similar image intensity and SNR's and have succeeded in getting all tissues about the same signal. However, in the 2D FSE sequence, image contrast between CSF, muscle and scalp was good and SNR was relatively high, imaging time was relatively short.

  • PDF

Modified Weighted Filter by Standard Deviation in S&P Noise Environments (S&P 잡음 환경에서 표준편차를 이용한 변형된 가중치 필터)

  • Baek, Ji-Hyeon;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.474-480
    • /
    • 2020
  • With the advent of the Fourth Industrial Revolution, many new technologies are being utilized. In particular, video signals are used in various fields. However, when transmitting and receiving video signals, salt and pepper noise and additive white Gaussian noise (AWGN) occur for multiple reasons. Failure to remove such noise when performing image processing can cause problems. Generally, filters such as CWMF, MF, and AMF remove noise. However, these filters perform somewhat poorly in the high-density noise domain and cause smoothing, resulting in slightly lower retention of the edge components. In this paper, we propose an algorithm by effectively eliminating salt and pepper noise using a modified weight filter using standard deviation. In order to prove the noise reduction performance of the proposed algorithm, we compared it with the existing algorithm using PSNR and magnified images.

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.

Landscape Analysis of Habitat Fragmentation in the North and South Korean Border (남북한 접경지역 개발에 따른 서식지 파편화에 대한 경관생태학적 분석)

  • Sung, Chan-Yong;Cho, Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.6
    • /
    • pp.952-959
    • /
    • 2012
  • This study examined habitat fragmentation that has occurred in Paju and Yeoncheon, the two border municipalities between North and South Korea in Gyeonggi-do (province) during the last 17 years using various landscape metrics. We 1) classified grass and agricultural habitats and forest habitats from two Landsat TM images collected in 1990 and 2007, and 2) compared the percentage of class area, patch density, mean patch area, and mean perimeter area ratio for the two habitat types between the two time points. Both types of habitats has been severely fragmented due to urban development in the last 17 years. The increased patch density and decreased mean habitat area are attributed to the construction of roads and railroads that separate a large habitat to many small pieces. The increased mean perimeter area ratio also indicates that the habitat fragmentation extended areas that are affected by the edge effect and so less suitable for interior species. A habitat conservation plan is urgently needed to minimize habitat fragmentation from developments that are expected to soon occur in the north and south Korean border.

Study on the Physical and Mechanical Properties of Particleboard and Oriented Strandboard Manufactured by Tulliptree (Liriodendron tulipifera L.) (백합나무를 이용하여 제조한 3층 파티클보드와 배향성 스트랜드보드(OSB)의 물성에 관한 연구)

  • Seo, Jun won;Gang, Gil woo;Jo, Gun hee;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.67-72
    • /
    • 2018
  • This study was conducted to investigate a potential of Yellow poplar (Liriodendron tulipifera L.) as a raw material for the manufacturing of particleboard (PB) and oriented strandboard (OSB). PB panels were prepared at the parameters of $0.7g/cm^3$ density, 15 mm thickness, three-layer, $E_1$ grade urea-formaldehyde (UF) resin, emulsion wax, and hardener. OSB panels were manufactured with a density of $0.65g/cm^3$, thickness of 10 mm, and $E_1$ grade of UF resin. Particle size of the face layer of PB was 20~80 mesh with 7~9% moisture content (MC), while that of core-layer was 3~20 mesh with 3~5% MC, which was similar to the production condition of commercial PB. As a result, the manufactured PB panels with 15.8 mm thickness, $0.7g/cm^3$ density, and 5.8% MC satisfied the requirement of bending strength of 15 type PB of Korean Industrial Standard (KS F 3104). Both internal bonding (IB) strength and surface screw withdrawal resistance also satisfied the requirement of 18 type PB of the standard. But, the edge screw withdrawal resistance satisfied the requirement of 15 type PB of the standard. These differences in properties could be due to the slenderness ratio of raw particles. In case of OSB panels with 10.7 mm thickness, $0.68g/cm^3$ density, and 5.8% MC satisfied all the requirements of bending strength, screw withdrawal resistance, and IB strength of 18 type PB of the standard. These results suggest that Yellow poplar wood has a good potential as a raw material for the production of PB and OSB.