• Title/Summary/Keyword: Image data collection system

Search Result 98, Processing Time 0.025 seconds

Development of Video Image Detection System based on Tripwire and Vehicle Tracking Technologies focusing performance analysis with Autoscope (Tripwire 및 Tracking 기반의 영상검지시스템 개발 (Autoscope와의 성능비교를 중심으로))

  • Oh, Ju-Taek;Min, Joon-Young;Kim, Seung-Woo;Hur, Byung-Do;Kim, Myung-Soeb
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.2
    • /
    • pp.177-186
    • /
    • 2008
  • Video Image Detection System can be used for various traffic managements including traffic operation and traffic safety. Video Image Detection Technique can be divide by Tripwire System and Tracking System. Autoscope, which is widely used in the market, utilizes the Tripwire System. In this study, we developed an individual vehicle tracking system that can collect microscopic traffic information and also developed another image detection technology under the Tripwire System. To prove the accuracy and reliability of the newly developed systems, we compared the traffic data of the systems with those generated by Autoscope. The results showed that 0.35% of errors compared with the real traffic counts and 1.78% of errors with Autoscope. Performance comparisons on speed from the two systems showed the maximum errors of 1.77% with Autoscope, which confirms the usefulness of the newly developed systems.

DEVELOPMENTS OF ASTRONOMICAL IMAGE ARCHIVING SYSTEM (천문 이미지 디지털 아카이빙 시스템 개발)

  • Sung Hyun-Il;Kim Soon-Wook;Bae Young-Ho;Choi Joon-Young
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • An archiving system designed to enable documenting database of astronomical images, with functions of search and download, is being developed by Korean Astronomical Data Center(KADC) of Korea Astronomy and Space Science Institute(KASI). The system consists of three PCs for web server, database server, and system management server. The search program for the web environment is operated in the web server. In the management server, several utility program we developed are installed: input program for the database, program for transfer from fits to jpg files, program for data recovery and management, and programs for statistics and connect management. The collected data would be sorted out by the system manager to input into the database. The online input is possible in an observatory where the data is produced. We applied the content management system(CMS) module for the database management. On the basic of CMS module, we set up a management system for the whole life cycle of metadata from creation and collection to storage and deletion of the data. For the search function, we employed a technique to extract indices from the metadata. In addition, MySQL is adopted for DBMS. We currently display about 2,700 and 25,000 photographs for astronomical phenomena and astronomical objects on the data, respectively.

AUTOMATIC PRECISION CORRECTION OF SATELLITE IMAGES

  • Im, Yong-Jo;Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.40-44
    • /
    • 2002
  • Precision correction is the process of geometrically aligning images to a reference coordinate system using GCPs(Ground Control Points). Many applications of remote sensing data, such as change detection, mapping and environmental monitoring, rely on the accuracy of precision correction. However it is a very time consuming and laborious process. It requires GCP collection, the identification of image points and their corresponding reference coordinates. At typical satellite ground stations, GCP collection requires most of man-powers in processing satellite images. A method of automatic registration of satellite images is demanding. In this paper, we propose a new algorithm for automatic precision correction by GCP chips and RANSAC(Random Sample Consensus). The algorithm is divided into two major steps. The first one is the automated generation of ground control points. An automated stereo matching based on normalized cross correlation will be used. We have improved the accuracy of stereo matching by determining the size and shape of match windows according to incidence angle and scene orientation from ancillary data. The second one is the robust estimation of mapping function from control points. We used the RANSAC algorithm for this step and effectively removed the outliers of matching results. We carried out experiments with SPOT images over three test sites which were taken at different time and look-angle with each other. Left image was used to select UP chipsets and right image to match against GCP chipsets and perform automatic registration. In result, we could show that our approach of automated matching and robust estimation worked well for automated registration.

  • PDF

Comparative Analysis of YOLOv8 Object Detection Model Performance in Fire Detection in Traditional Markets Using Thermal Cameras (열화상 카메라를 이용한 전통시장 화재 감지에서 YOLOv8 객체 탐지 모델의 성능 비교 분석)

  • Ko Ara;Cho Jungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.117-126
    • /
    • 2023
  • Traditional markets, formed naturally, often feature aged buildings and facilities that are susceptible to fire. However, the lack of adequate fire detection systems in these markets can easily lead to large-scale fires upon ignition. Therefore, this study was conducted with the aim of detecting fires in traditional markets, utilizing thermal imaging cameras for data collection and the YOLOv8 model for object detection experiments. Data were collected in the night markets within traditional markets of xx city and by simulating fire scenarios. A comparative analysis of the Nano and XL models of YOLOv8 revealed that the XL model is more effective in detecting fires. The XL model not only demonstrated higher accuracy in correctly identifying flames but also tended to miss fewer fires compared to the Nano model. In the case of objects other than flames, the XL model showed superior performance over the Nano model. Taking all these factors into account, it is anticipated that with further data collection and improvement in model performance, a suitable fire detection system for traditional markets can be developed.

Factors Influencing Customers to Use Digital Banking Application in Yogyakarta, Indonesia

  • MUFARIH, Muhammad;JAYADI, Riyanto;SUGANDI, Yovin
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.897-907
    • /
    • 2020
  • The development of information technology and the demands of society on an application in an operating system, as well as increasing the specifications and sophistication of smartphones, require banks to make changes to their mobile banking applications. The transformation of the mobile banking application into a digital banking application conducted by banks has made users re-evaluate based on their preferences. This study presents the behavior of users of digital banking applications in Yogyakarta, Indonesia. The hypothesis model is based on Technology Acceptance Model (TAM) with additional factors of the social image, perceived risk and perceived trust adopted from Muñoz-Leiva et al. (2017). The methodology in this study includes data collection through questionnaires distributed online and data analysis using the Structural Equation Model. The results of this study illustrate that the perceived trust and perceived risk have a more dominant part in influencing user attitude and user intention to use digital banking. Meanwhile, social image, perceived ease-of-use and perceived usefulness are not significant in influencing user attitude and user intention to use digital banking. The implication of this research helps to determine the right communication and strategy so that more users with more benefits can utilize this digital banking application.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

An Artificial Intelligence Research for Maritime Targets Identification based on ISAR Images (ISAR 영상 기반 해상표적 식별을 위한 인공지능 연구)

  • Kim, Kitae;Lim, Yojoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.12-19
    • /
    • 2022
  • Artificial intelligence is driving the Fourth Industrial Revolution and is in the spotlight as a general-purpose technology. As the data collection from the battlefield increases rapidly, the need to us artificial intelligence is increasing in the military, but it is still in its early stages. In order to identify maritime targets, Republic of Korea navy acquires images by ISAR(Inverse Synthetic Aperture Radar) of maritime patrol aircraft, and humans make out them. The radar image is displayed by synthesizing signals reflected from the target after radiating radar waves. In addition, day/night and all-weather observations are possible. In this study, an artificial intelligence is used to identify maritime targets based on radar images. Data of radar images of 24 maritime targets in Republic of Korea and North Korea acquired by ISAR were pre-processed, and an artificial intelligence algorithm(ResNet-50) was applied. The accuracy of maritime targets identification showed about 99%. Out of the 81 warship types, 75 types took less than 5 seconds, and 6 types took 15 to 163 seconds.

Comparison and Application of Deep Learning-Based Anomaly Detection Algorithms for Transparent Lens Defects (딥러닝 기반의 투명 렌즈 이상 탐지 알고리즘 성능 비교 및 적용)

  • Hanbi Kim;Daeho Seo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.1
    • /
    • pp.9-19
    • /
    • 2024
  • Deep learning-based computer vision anomaly detection algorithms are widely utilized in various fields. Especially in the manufacturing industry, the difficulty in collecting abnormal data compared to normal data, and the challenge of defining all potential abnormalities in advance, have led to an increasing demand for unsupervised learning methods that rely on normal data. In this study, we conducted a comparative analysis of deep learning-based unsupervised learning algorithms that define and detect abnormalities that can occur when transparent contact lenses are immersed in liquid solution. We validated and applied the unsupervised learning algorithms used in this study to the existing anomaly detection benchmark dataset, MvTecAD. The existing anomaly detection benchmark dataset primarily consists of solid objects, whereas in our study, we compared unsupervised learning-based algorithms in experiments judging the shape and presence of lenses submerged in liquid. Among the algorithms analyzed, EfficientAD showed an AUROC and F1-score of 0.97 in image-level tests. However, the F1-score decreased to 0.18 in pixel-level tests, making it challenging to determine the locations where abnormalities occurred. Despite this, EfficientAD demonstrated excellent performance in image-level tests classifying normal and abnormal instances, suggesting that with the collection and training of large-scale data in real industrial settings, it is expected to exhibit even better performance.

Dynamic ontology construction algorithm from Wikipedia and its application toward real-time nation image analysis (국가이미지 분석을 위한 위키피디아 실시간 동적 온톨로지 구축 알고리즘 및 적용)

  • Lee, Youngwhan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.979-991
    • /
    • 2016
  • Measuring nation images was a challenging task when employing offline surveys was the only option. It was not only prohibitively expensive, but too much time-consuming and therefore unfitted to this rapidly changing world. Although demands for monitoring real-time nation images were ever-increasing, an affordable and reliable solution to measure nation images has not been available up to this date. The researcher in this study developed a semi-automatic ontology construction algorithm, named "double-crossing double keyword collection (or DCDKC)" to measure nation images from Wikipedia in real-time. The ontology, WikiOnto, can be used to reflect dynamic image changes. In this study, an instance of WikiOnto was constructed by applying the algorithm to the big-three exporting countries in East Asia, Korea, Japan, and China. Then, the numbers of page views for words in the instance of WikiOnto were counted. A collection of the counting for each country was compared to each other to inspect the possibility to use for dynamic nation images. As for the conclusion, the result shows how the images of the three countries have changed for the period the study was performed. It confirms that DCDKC can very well be used for a real-time nation-image monitoring system.

Wind Tunnel Testing Productivity at KARI LSWT

  • Chung, Jindeog;Cho, Taehwan;Sung, Bongzoo;Lee, Jangyeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.103-109
    • /
    • 2001
  • Productivity enhancement program of wind tunnel testing has begun at Korea Aerospace Research Institute Low Speed Wind Tunnel (KARI LSWT). A previous test record of a canard airplane model was adopted to examine the current status of wind tunnel testing efficiency. The time consumed to perform testing activities from the model preparation to data collection was broken down and the results were compared with those of the recent Boeing low speed test result. The efforts to improve the wind tunnel productivity consisted of the installation of mini crane underneath of test section, fabricating lift device for image fairings, model configuration changing rigs and the modifications of external balance system. Time reductions for changing strut interface platform and installation of image fairings. These effects showed more than 70% improvement over the previous test time. Integration of the new and modified systems will improve productivity of wind tunnel testing in KARI LSWT.

  • PDF