• Title/Summary/Keyword: Image correction error

Search Result 242, Processing Time 0.027 seconds

COLOR CORRECTION METHOD USING GRAY GRADIENT BAR FOR MULTI-VIEW CAMERA SYSTEM

  • Jung, Jae-Il;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.1-6
    • /
    • 2009
  • Due to the different camera properties of the multi-view camera system, the color properties of captured images can be inconsistent. This inconsistency makes post-processing such as depth estimation, view synthesis and compression difficult. In this paper, the method to correct the different color properties of multi-view images is proposed. We utilize a gray gradient bar on a display device to extract the color sensitivity property of the camera and calculate a look-up table based on the sensitivity property. The colors in the target image are converted by mapping technique referring to the look-up table. Proposed algorithm shows the good subjective results and reduces the mean absolute error among the color values of multi-view images by 72% on average in experimental results.

  • PDF

A Study on Smart Touch Projector System Technology Using Infrared (IR) Imaging Sensor (적외선 영상센서를 이용한 스마트 터치 프로젝터 시스템 기술 연구)

  • Lee, Kuk-Seon;Oh, Sang-Heon;Jeon, Kuk-Hui;Kang, Seong-Soo;Ryu, Dong-Hee;Kim, Byung-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.7
    • /
    • pp.870-878
    • /
    • 2012
  • Recently, very rapid development of computer and sensor technologies induces various kinds of user interface (UI) technologies based on user experience (UX). In this study, we investigate and develop a smart touch projector system technology on the basis of IR sensor and image processing. In the proposed system, a user can control computer by understanding the control events based on gesture of IR pen as an input device. In the IR image, we extract the movement (or gesture) of the devised pen and track it for recognizing gesture pattern. Also, to correct the error between the coordinate of input image sensor and display device (projector), we propose a coordinate correction algorithm to improve the accuracy of operation. Through this system technology as the next generation human-computer interaction, we can control the events of the equipped computer on the projected image screen without manipulating the computer directly.

Coordinates Transformation and Correction Techniques of the Distorted Omni-directional Image (왜곡된 전 방향 영상에서의 좌표 변환 및 보정)

  • Cha, Sun-Hee;Park, Young-Min;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.816-819
    • /
    • 2005
  • This paper proposes a coordinate correction technique using the transformation of 3D parabolic coordinate function and BP(Back Propagation) neural network in order to solve space distortion problem caused by using catadioptric camera. Although Catadioptric camera can obtain omni-directional image at all directions of 360 degrees, it makes an image distorted because of an external form of lens itself. Accordingly, To obtain transformed ideal distance coordinate information from distorted image on 3 dimensional space, we use coordinate transformation function that uses coordinates of a focus at mirror in the shape of parabolic plane and another one which projected into the shape of parabolic from input image. An error of this course is modified by BP neural network algorithm.

  • PDF

Fault Tolerant Encryption and Data Compression under Ubiquitous Environment (Ubiquitous 환경 하에서 고장 극복 암호 및 데이터 압축)

  • You, Young-Gap;Kim, Han-Byeo-Ri;Park, Kyung-Chang;Lee, Sang-Jin;Kim, Seung-Youl;Hong, Yoon-Ki
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.91-98
    • /
    • 2009
  • This paper presents a solution to error avalanche of deciphering where radio noise brings random bit errors in encrypted image data under ubiquitous environment. The image capturing module is to be made comprising data compression and encryption features to reduce data traffic volume and to protect privacy. Block cipher algorithms may experience error avalanche: multiple pixel defects due to single bit error in an encrypted message. The new fault tolerant scheme addresses error avalanche effect exploiting a three-dimensional data shuffling process, which disperses error bits on many frames resulting in sparsely isolated errors. Averaging or majority voting with neighboring pixels can tolerate prominent pixel defects without increase in data volume due to error correction. This scheme has 33% lower data traffic load with respect to the conventional Hamming code based approach.

A color compensation method for a projector considering non-flatness of color screen and mean lightness of the projected image (유색 스크린의 굴곡과 영상의 평균밝기를 고려한 프로젝터용 색 보정 기법)

  • Sung, Soo-Jin;Lee, Cheol-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.213-224
    • /
    • 2010
  • In this paper, we propose an algorithm both geometric correction using a grid point image and radiometric adaptive projection that dependent upon the luminance of the input image and that of the background. This method projects and captures the grid point image then calculates the geometrically corrected position by difference between the two images. Next, to compensate color, a corrected image is calculated by the ratio divided luminance of an input image by luminance of arbitrary surface. In addition, we found the scaling factor which controls the contrast to avoid clipping error. At this time, the scaling factor is dependent on mean image lightness when background is determined. Experimental results show that the proposed method achieves good performance and is able to reduce the perceived color clipping and artifacts, better approximating the projection on a white screen.

Identification and Correction of Microlens-array Error in an Integral-imaging-microscopy System

  • Imtiaz, Shariar Md;Kwon, Ki-Chul;Alam, Md. Shahinur;Hossain, Md. Biddut;Changsup, Nam;Kim, Nam
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.524-531
    • /
    • 2021
  • In an integral-imaging microscopy (IIM) system, a microlens array (MLA) is the primary optical element; however, surface errors impede the resolution of a raw image's details. Calibration is a major concern with regard to incorrect projection of the light rays. A ray-tracing-based calibration method for an IIM camera is proposed, to address four errors: MLA decentering, rotational, translational, and subimage-scaling errors. All of these parameters are evaluated using the reference image obtained from the ray-traced white image. The areas and center points of the microlens are estimated using an "8-connected" and a "center-of-gravity" method respectively. The proposed approach significantly improves the rectified-image quality and nonlinear image brightness for an IIM system. Numerical and optical experiments on multiple real objects demonstrate the robustness and effectiveness of our proposed method, which achieves on average a 35% improvement in brightness for an IIM raw image.

Error Correction of Interested Points Tracking for Improving Registration Accuracy of Aerial Image Sequences (항공연속영상 등록 정확도 향상을 위한 특징점추적 오류검정)

  • Sukhee, Ochirbat;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.93-97
    • /
    • 2010
  • This paper presents the improved KLT(Kanade-Lucas-Tomasi) of registration of Image sequence captured by camera mounted on unmanned helicopter assuming without camera attitude information. It consists of following procedures for the proposed image registration. The initial interested points are detected by characteristic curve matching via dynamic programming which has been used for detecting and tracking corner points thorough image sequence. Outliers of tracked points are then removed by using Random Sample And Consensus(RANSAC) robust estimation and all remained corner points are classified as inliers by homography algorithm. The rectified images are then resampled by bilinear interpolation. Experiment shows that our method can make the suitable registration of image sequence with large motion.

Development of a Surface Roughness Measurement Method Using Reflected Laser Beam Image and Its Application (레이저광 반사 화상을 이용한 표면 거칠기 측정법의 개발과 적용)

  • Yun, Yun-Feng-Shen;Kim, haa-young;An, jung-hwan;Chi, ei-jon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.51-57
    • /
    • 2001
  • A light beam reflected from a machined surface generally containes information concerning about its surface roughness. This study examines and proposes a surface roughness measurement technique for on-machine measurement of machined surfaces. The technique is based on the measurement of a reflected laser beam pattern and the statistical analysis of its light intensity distribution. The surface roughness was found to be closely related to the standard deviation of the light intensity on the primary axis of the reflected pattern. An image acquisition device is made up of a laser diode, a half mirror, a screen, and a CCD camera. The exact image with the primary and secondary axes of a reflected laser beam pattern is calculated through such image processing algorithm as thresholding, edge detection, image rotation, segmentation, etc. A median filter and a surrounding light correction algorithm are improve the image quality and reduce the measuring error. Using the developed measuring device the effect of screen materials and workpiece and workpiece materials was investigated. Experimental results regarding to relatively high-quality surfaces machined by grinding, polishing, lapping processes have shown the measurement error is within 10% in the range of $0.1{mu}m~0.8{\mu}m R_q.$Therefore, the proposed method is thought to be effectively used when quick measurements is needed with workpieces fixed on the machine.

  • PDF

High Resolution Reconstruction of Multispectral Imagery with Low Resolution (저해상도 Multispectral 영상의 고해상도 재구축)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • This study presents an approach to reconstruct high-resolution imagery for multispectral imagery of low-resolution using panchromatic imagery of high-resolution. The proposed scheme reconstructs a high-resolution image which agrees with original spectral values. It uses a linear model of high-and low- resolution images and consists of two stages. The first one is to perform a global estimation of the least square error on the basis of a linear model of low-resolution image associated with high-resolution feature, and next local correction then makes the reconstructed image locally fit to the original spectral values. In this study, the new method was applied to KOMPSAT-1 EOC image of 6m and LANDSAT ETM+ of 30m, and an 1m RGB image was also generated from 4m IKONOS multispectral data. The results show its capability to reconstruct high-resolution imagery from multispectral data of low-resolution.

Cancellation of MRI Artifact due to Rotational Motion (회전운동에 기인한 MRI 아티팩트의 제거)

  • 김응규
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.411-419
    • /
    • 2004
  • When the imaging object rotates in image plane during MRI scan, its rotation causes phase error and non-uniform sampling to MRI signal. The model of the problem including phase error non-uniform sampling of MRI signal showed that the MRI signals corrupted by rotations about an arbitrary center and the origin in image plane are different in their phases. Therefore the following methods are presented to improve the quality of the MR image which includes the artifact. The first, assuming that the angle of 2-D rotational motion is already known and the position of 2-D rotational center is unknown, an algorithm to correct the artifact which is based on the phase correction is presented. The second, in case of 2-D rotational motion with unknown rotational center and unknown rotational angle, an algorithm is presented to correct the MRI artifact. At this case, the energy of an ideal MR image is minimum outside the boundary of the imaging object to estimate unknown motion parameters and the measured energy increases when the imaging object has an rotation. By using this property, an evaluation function is defined to estimate unknown values of rotational angle at each phase encoding step. Finally, the effectiveness of this presented techniques is shown by using a phantom image with simulated motion and a real image with 2-D translational shift and rotation.