• Title/Summary/Keyword: Image correction error

Search Result 242, Processing Time 0.025 seconds

Error Correction Coding on the Transform Coded Image Transmission over Noisy Channel (잡음 채널에서 변환 부호화 영상 전송에 대한 에러 정정 부호)

  • 채종길;주언경
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.97-105
    • /
    • 1994
  • Transform image coding using DCT is proved to be efficient in the absence of channel error but its performance degrades rapidly over noisy channel. In this paper, in the case of appling bit selcetive error correction coding that protects some significant bits in a codeword, an efficient allocation method of imformation bits and additive redundancy bits used for quantization and error correction coding respectively under constant transmission bit rate is proposed, and its performance is analyzed. As a result, without increasing trasmission bit rate, PSNR can be improved up to 7~8 [dB] below bit error rate $10^2$ and the image without blocking effect caused by bit error resulted from channel noise can be recostructed.

  • PDF

Colour Interpolation of Tongue Image in Digital Tongue Image System Blocking Out External Light (디지털 설진 시스템의 색상 보정)

  • Kim, Ji-Hye;Nam, Dong-Hyun
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.16 no.1
    • /
    • pp.9-18
    • /
    • 2012
  • Objectives The aim of this study is to propose an optimized tongue colour interpolation method to achieve accurate tongue image rendering. Methods We selected 60 colour chips in the chips of DIC color guide selector, and then divided randomly the colour chips into two groups. The colour chips of a group (Gr I) were used for finding the optimized colour correction factor of error and those of the other group (Gr II) were used for verifying the correction factor. We measured colour value of the Gr I colour chips with spectrophotometer, and took the colour chips image with a digital tongue image system (DTIS). We adjusted colour correction factor of error to equal the chip colour from each method. Through that process, we obtained the optimized colour correction factor. To verify the correction factor, we measured colour value of the Gr II colour chips with a spectrophotometer, and took the colour chips image with the DTIS in the two types of colour interpolation mode (auto white balance mode and optimized colour correction factor mode). And then we calculated the CIE-$L^*ab$ colour difference (${\Delta}E$) between colour values measured with the spectrophotometer and those from images taken with the DTIS. Results In auto white balance mode, The mean ${\Delta}E$ between colour values measured with the spectrophotometer and those from images taken with the DTIS was 13.95. On the other hand, in optimized colour correction factor mode, The mean ${\Delta}E$ was 9.55. The correction rate was over 30%. Conclusions In case of interpolating colour of images taken with the DTIS, we suggest that procedure to search the optimized colour correction factor of error should be done first.

Context-Sensitive Spelling Error Correction Techniques in Korean Documents using Generative Adversarial Network (생성적 적대 신경망(GAN)을 이용한 한국어 문서에서의 문맥의존 철자오류 교정)

  • Lee, Jung-Hun;Kwon, Hyuk-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1391-1402
    • /
    • 2021
  • This paper focuses use context-sensitive spelling error correction using generative adversarial network. Generative adversarial network[1] are attracting attention as they solve data generation problems that have been a challenge in the field of deep learning. In this paper, sentences are generated using word embedding information and reflected in word distribution representation. We experiment with DCGAN[2] used for the stability of learning in the existing image processing and D2GAN[3] with double discriminator. In this paper, we experimented with how the composition of generative adversarial networks and the change of learning corpus influence the context-sensitive spelling error correction In the experiment, we correction the generated word embedding information and compare the performance with the actual word embedding information.

Effect of All Sky Image Correction on Observations in Automatic Cloud Observation (자동 운량 관측에서 전천 영상 보정이 관측치에 미치는 효과)

  • Yun, Han-Kyung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.103-108
    • /
    • 2022
  • Various studies have been conducted on cloud observation using all-sky images acquired with a wide-angle camera system since the early 21st century, but it is judged that an automatic observation system that can completely replace the eye observation has not been obtained. In this study, to verify the quantification of cloud observation, which is the final step of the algorithm proposed to automate the observation, the cloud distribution of the all-sky image and the corrected image were compared and analyzed. The reason is that clouds are formed at a certain height depending on the type, but like the retina image, the center of the lens is enlarged and the edges are reduced, but the effect of human learning ability and spatial awareness on cloud observation is unknown. As a result of this study, the average cloud observation error of the all-sky image and the corrected image was 1.23%. Therefore, when compared with the eye observation in the decile, the error due to correction is 1.23% of the observed amount, which is very less than the allowable error of the eye observation, and it does not include human error, so it is possible to collect accurately quantified data. Since the change in cloudiness due to the correction is insignificant, it was confirmed that accurate observations can be obtained even by omitting the unnecessary correction step and observing the cloudiness in the pre-correction image.

Research on a Method for the Optical Measurement of the Rifling Angle of Artillery Based on Angle Error Correction

  • Zhang, Ye;Zheng, Yang
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.500-508
    • /
    • 2020
  • The rifling angle of artillery is an important parameter, and its determination plays a key role in the stability, hit rate, accuracy and service life of artillery. In this study, we propose an optical measurement method for the rifling angle based on angle error correction. The method is based on the principle of geometrical optics imaging, where the rifling on the inner wall of the artillery barrel is imaged on a CCD camera target surface by an optical system. When the measurement system moves in the barrel, the rifling image rotates accordingly. According to the relationship between the rotation angle of the rifling image and the travel distance of the measurement system, different types of rifling equations are established. Solving equations of the rifling angle are deduced according to the definition of the rifling angle. Furthermore, we added an angle error correction function to the method that is based on the theory of dynamic optics. This function can measure and correct the angle error caused by the posture change of the measurement system. Thus, the rifling angle measurement accuracy is effectively improved. Finally, we simulated and analyzed the influence of parameter changes of the measurement system on rifling angle measurement accuracy. The simulation results show that the rifling angle measurement method has high measurement accuracy, and the method can be applied to different types of rifling angle measurements. The method provides the theoretical basis for the development of a high-precision rifling measurement system in the future.

A Measurement Error Correction Algorithm of Road Image for Traveling Vehicle's Fluctuation Using V.F. Modeling (V.F. 모델링을 이용한 주행차량의 진동에 대한 도로영상의 계측오차 보정 알고리듬)

  • Kim Tae-Hyo;Seo Kyung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.824-833
    • /
    • 2006
  • In this paper, the image modelling of road's lane markings is established using view frustum(VF) model. From this model, a measurement system of lane markings and obstacles is proposed. The system also involve the real time processing of the 3D position coordinate and the distance data from the camera to the points on the 3D world coordinate by virtue of the camera calibration. In order to reduce their measurement error, an useful algorithm for which analyze the geometric variations due to traveling vehicle's fluctuation using VF model is proposed. In experiments, without correction, for instance, the $0.4^{\circ}$ of pitching rotation gives the error of $0.4{\sim}0.6m$ at the distance of 10m, but the more far distance cause exponentially the more error. We con finned that this algorithm can be reduced less than 0.1m of error at the same condition.

Inverse quantization of DCT coefficients using Laplacian pdf (Laplacian pdf를 적용한 DCT 계수의 역양자화)

  • 강소연;이병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.857-864
    • /
    • 2004
  • Many image compression standards such as JPEG, MPEG or H.263 are based on the discrete cosine transform (DCT) and quantization method. Quantization error. is the major source of image quality degradation. The current dequantization method assumes the uniform distribution of the DCT coefficients. Therefore the dequantization value is the center of each quantization interval. However DCT coefficients are regarded to follow Laplacian probability density function (pdf). The center value of each interval is not optimal in reducing squared error. We use mean of the quantization interval assuming Laplacian pdf, and show the effect of correction on image quality. Also, we compare existing quantization error to corrected quantization error in closed form. The effect of PSNR improvements due to the compensation to the real image is in the range of 0.2 ∼0.4 ㏈. The maximum correction value is 1.66 ㏈.

Residual error selecting method for precise geometric correction

  • Kim, Myoung-Sun;Ohno, Yasuo;Takagi, Mikio
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.3-7
    • /
    • 1999
  • The images of the meteorological satellite NOAA contain geometrical distortions caused by its ambiguous position, its vibration, its sensor's movement, and so on. Geometric correction of satellite images is one of the most important parts in many remote sensing as the primary processing. Ground control points (GCP's) are necessary to check the accuracy of geometric correction and used for precise geometric correction. In this paper, a method for automatically selecting the residual error is presented. Calculating the effective angle and residual errors vector using the succeeded matching GCP's, precise geometric correction using an affine transformation is applied to systematically a corrected image. And the error is decreased by an affine transformation. The above enable the geometric correction of high quality.

  • PDF

A Study on FPGA Design for Rotating LED Display Available Video Output (동영상 표출이 가능한 회전 LED 전광판을 위한 FPGA 설계에 관한 연구)

  • Lim, Young-Sik;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.168-175
    • /
    • 2015
  • In this paper, we propose FPGA design technique for rotating LED display device which is capable of displaying videos with the use of the afterimage effect. The proposed technique is made up of image data correction process based on inverse gamma correction and error diffusion, block interleaving process, and data serial output process. The data correction process based on inverse gamma correction and error diffusion is an image data correction step in which image data received are corrected by inverse gamma correction process to convert the data into linear brightness characteristics, and by error diffusion process to reduce the brightness reduction phenomenon in low-gray-level which is caused by inverse gamma correction. In the block interleaving process, the data of the frames entered transversely are first saved in accordance with entrance order, and then only the longitudinal image data are read. The data serial output process is applied to convert the parallel data in a rotating location into serial data and send them to LED Driver IC, in order to send data which will be displayed on high-speedy rotating LED Bar. To evaluate the accuracy of the proposed FPGA design technique, this paper used XC6SLX45-FG484, a Spartan 6 family of Xilinx, as FPGA, and ISE 14.5 as a design tool. According to the evaluation analysis, it was found that goal values were consistent with simulation values in terms of accurate operation of inverse gamma and error diffusion correction, block interleaving operation, and serialized operation of image data.

The Effect Analysis and Correction of Phase errors by Satellite Attitude Errors using the FSA for the Spotlight SAR Processing (Spotlight SAR 신호처리기법 FSA를 이용한 위성 자세오차로 인한 위상오차 영향분석 및 보정)

  • Shim, Sang-Heun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.160-169
    • /
    • 2007
  • In this paper, we have described and simulated the effect analysis and correction of phase errors in the SAR rawdata induced by satellite attitude errors such as drift, jitter. This simulation is based on the FSA(Frequency Scaling Algorithm) for high resolution image formation of the Spotlight SAR. Phase errors produce the degradation of SAR image quality such as loss of resolution, geometric distortion, loss of contrast, spurious targets, and decrease in SNR. To resolve this problem, this paper presents method for correction of phase errors using the PGA(Phase Gradient Algorithm) in connection with the FSA. Several results of the phase errors correction are presented for Spotlight SAR rawdata.