• Title/Summary/Keyword: Image correction

Search Result 1,213, Processing Time 0.028 seconds

A Study on Atmospheric Correction in Satellite Imagery Using an Atmospheric Radiation Model (대기복사모형을 이용한 위성영상의 대기보정에 관한 연구)

  • Oh, Sung-Nam
    • Atmosphere
    • /
    • v.14 no.2
    • /
    • pp.11-22
    • /
    • 2004
  • A technique on atmospheric correction algorithm to the multi-band reflectance of Landsat TM imagery has been developed using an atmospheric radiation transfer model for eliminating the atmospheric and surface diffusion effects. Despite the fact that the technique of satellite image processing has been continually developed, there is still a difference between the radiance value registered by satellite borne detector and the true value registered at the ground surface. Such difference is caused by atmospheric attenuations of radiance energy transfer process which is mostly associated with the presence of aerosol particles in atmospheric suspension and surface irradiance characteristics. The atmospheric reflectance depend on atmospheric optical depth and aerosol concentration, and closely related to geographical and environmental surface characteristics. Therefore, when the effects of surface diffuse and aerosol reflectance are eliminated from the satellite image, it is actually corrected from atmospheric optical conditions. The objective of this study is to develop an algorithm for making atmospheric correction in satellite image. The study is processed with the correction function which is developed for eliminating the effects of atmospheric path scattering and surface adjacent pixel spectral reflectance within an atmospheric radiation model. The diffused radiance of adjacent pixel in the image obtained from accounting the average reflectance in the $7{\times}7$ neighbourhood pixels and using the land cover classification. The atmospheric correction functions are provided by a radiation transfer model of LOWTRAN 7 based on the actual atmospheric soundings over the Korean atmospheric complexity. The model produce the upward radiances of satellite spectral image for a given surface reflectance and aerosol optical thickness.

Shading Correction Algorithm and CMOS Image Sensing System Design (쉐이딩 보정 알고리즘과 CMOS 이미지 센싱 시스템 설계)

  • Kim, Young Bin;Ryu, Conan K.R.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.1003-1006
    • /
    • 2012
  • The image correction algorithm and system design for CMOS sensor to enhance the image resolution is presented in this paper. The proposed algorithm finds out the image cell from the sensor and process them by the limited memory configuration. The evaluation of the method is done by the designed hardware system. The experimental results are capable of improving contrast per channel and of sensing equalized image quality on an edge of image.

  • PDF

THE ADVANTAGE OF ON ORBIT NON-UNIFORMITY CORRECTION FOR MULTI SPECTRAL CAMERA (MSC)

  • Chang Young-Jun;Kong Jong-Pil;Huh Haeng-Pal;Kim Young-Sun;Park Jong-Euk
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.586-588
    • /
    • 2005
  • The MSC (Multi Spectral Camera) system is a remote sensing payload to obtain high resolution ground image. This system uses lossy image compression method for &Direct mission& that transmit whole image during one contact. But some image degradation occurred especially at high compression ratio. To reduce this degradation, the MSC uses NUC (Non-uniformity Correction) Unit. This unit correct CCD (Charge Coupled Device)'s high-frequency non-uniformity. So high frequency contents of image can be minimized and whole system SNR can be maximized. But NUC has some disadvantage either. It decreases entire system reliability by adding one electronic system. Adding NUC also led to difficulty of electronic design, assembly and testability. In this paper, the comparison is performed between on-orbit non-uniform correction and on ground correction. by evaluating NUC advantage for the point of view of image quality. Using real MSC parameter and proper model, considerable reference point for the system design came to possible.

  • PDF

Realtime Implementation Method for Perspective Distortion Correction (원근 왜곡 보정의 실시간 구현 방법)

  • Lee, Dong-Seok;Kim, Nam-Gyu;Kwon, Soon-Kak
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.4
    • /
    • pp.606-613
    • /
    • 2017
  • When the planar area is captured by the depth camera, the shape of the plane in the captured image has perspective projection distortion according to the position of the camera. We can correct the distorted image by the depth information in the plane in the captured area. Previous depth information based perspective distortion correction methods fail to satisfy the real-time property due to a large amount of computation. In this paper, we propose the method of applying the conversion table selectively by measuring the motion of the plane and performing the correction process by parallel processing for correcting perspective projection distortion. By appling the proposed method, the system for correcting perspective projection distortion correct the distorted image, whose resolution is 640x480, as 22.52ms per frame, so the proposed system satisfies the real-time property.

Correction and Positioning of Remote Sensing Image Base on Orbit Parameter

  • Cheng, Chunquan;Zhang, Jixian;Yan, Qin;Wang, Yali
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1212-1214
    • /
    • 2003
  • The usual technique of correction and positioning of film image of RS require enough control points to provide the geographic coordinate. Some distortion and error caused by earth curvature and terrain and photograph tilt can't be eliminated by these ways. In this paper a set of technique of systemic correction and positioning of remote sensing image base on orbit parameter is described, some questions in its realization and their solvent also included.

  • PDF

CCD Pixel Correction Table Generation for MSC

  • Kim Young Sun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Paik Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.471-474
    • /
    • 2004
  • Not all CCD pixels generate uniform value for the uniform radiance due to the different process of manufacture and each pixel characteristics. And the image data compression is essential in the real time image transmission because of the high line rate and the limited RF bandwidth. This pixel's nonuniformity and the loss compression make CCD pixel correction necessary in on-orbit condition. In the MSC system, the NUC unit, which is a part of MSC PMU, is charge of the correction for CCD each pixel. The correction is performed with the gain and the offset table for the each pixel and the each TDI mode. These correction tables are generated and programmed in the PMU Flash memory through the various image data tests at the ground test. Besides, they can be uploaded from ground station after onorbit calibration. This paper describes the principle of the table generation and the test way of the non-uniformity after NUC

  • PDF

An Automatic Method of Geometric Correction for Landsat Image using GCP Chip Database

  • Hwang, Tae-Hyun;Yun, Young-Bo;Yoon, Geun-Won;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.549-551
    • /
    • 2003
  • Satellite images are utilized for various purposes and many people are concerned about them. But it is necessary to process geometric correction for using of satellite images. However, common user regards geometric correction, which is basic preprocessing for satellite image, as laborious job. Therefore we should provide an automatic geometric correction method for Landsat image using GCP chip database. The GCP chip database is the collection of pieces of images with geoinformation and is provided by XML web service. More specifically, XML web service enables common users to easily use our GCP chip database for their own geometric correcting applications.

  • PDF

A Study on Image Distortion Correction for Gobo Lighting Optical System (고보 조명 광학계의 이미지 왜곡 보정에 관한 연구)

  • Gyu-Ha Kim;Ji-Hwan Lee;Chang-Hun Lee;Mee-Suk Jung
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.61-65
    • /
    • 2023
  • This paper studies a method of applying pre-distortion to the image mask of the gobo illumination optical system to correct an irradiated image and irradiate a clear image. In the case of the gobo illumination optical system, since it is generally irradiated with a tilt, distortion in the upper and lower directions occurs severely in the image. To solve this problem, the correction coordinates of the image were derived using a proportional equation, and the distortion was corrected by applying them to the image mask. As a result, it was confirmed that the distortion was reduced by 64.5% compared to the case of using the existing image mask.

Absolute Atmospheric Correction Procedure for the EO-1 Hyperion Data Using MODTRAN Code

  • Kim, Sun-Hwa;Kang, Sung-Jin;Chi, Jun-Hwa;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2007
  • Atmospheric correction is one of critical procedures to extract quantitative information related to biophysical variables from hyperspectral imagery. Most atmospheric correction algorithms developed for hyperspectral data have been based upon atmospheric radiative transfer (RT) codes, such as MODTRAN. Because of the difficulty in acquisition of atmospheric data at the time of image capture, the complexity of RT model, and large volume of hyperspectral data, atmospheric correction can be very difficult and time-consuming processing. In this study, we attempted to develop an efficient method for the atmospheric correction of EO-1 Hyperion data. This method uses the pre-calculated look-up-table (LUT) for fast and simple processing. The pre-calculated LUT was generated by successive running of MODTRAN model with several input parameters related to solar and sensor geometry, radiometric specification of sensor, and atmospheric condition. Atmospheric water vapour contents image was generated directly from a few absorption bands of Hyperion data themselves and used one of input parameters. This new atmospheric correction method was tested on the Hyperion data acquired on June 3, 2001 over Seoul area. Reflectance spectra of several known targets corresponded with the typical pattern of spectral reflectance on the atmospherically corrected Hyperion image, although further improvement to reduce sensor noise is necessary.

Skew Correction of Business Card Images for PDA Application (PDA에서의 명함 영상의 기울기 보정)

  • 박준효;장익훈;김남철
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2128-2131
    • /
    • 2003
  • We present an efficient algorithm for skew correction of business card images obtained by a PDA camera. The proposed method is composed of four parts: block adaptive binarization (BAB), stripe generation, skew angle calculation, and image rotation. In the BAB, an input image is binarized block by block so as to lessen the effects of irregular illumination and shadows over the input image. In the stripe generation, character string clusters are generated merging character strings and their inter-spaces, and then only clusters useful for skew angle calculation are output as stripes. In the skew angle calculation, the direction angles of the stripes are calculated using their central moments and then the skew angle of the input image is determined averaging the direction angles. In the image rotation, the input image is rotated by the skew angle. Experimental results shows that the proposed method yields correction rates of 97% for business card images.

  • PDF