• Title/Summary/Keyword: Image Wall

Search Result 567, Processing Time 0.029 seconds

Experimental Study of the Axial Slit Wall and Radial Temperature Gradient Effect on Taylor-Couette Flow (Taylor-Couette 유동에서 축방향 홈과 반경방향 온도구배의 영향에 대한 실험적 연구)

  • Lee, Sang-Hyuk;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.33-38
    • /
    • 2008
  • The effect of the radial temperature gradient and the presence of slits in the wall of outer of two cylinders involved in creating a Taylor-Couette flow was investigated by measuring the velocity field inside the gap. The slits were azimuthally located along the inner wall of the outer cylinder and the number of slits used in this study was 18. The radius ratio and aspect ratio of the models were 0.825 and 48, respectively. The heating film wrapped around the inner cylinder was used for generating the constant heat flux and we ensured the constant temperature condition at the outer space of the outer cylinder. The velocity fields were measured by using the PIV(particle image velocimetry) method. The refractive index matching method was applied to remove image distortion. The results were compared with plain wall configuration of Taylor-Couette flow. From the results, the presence of slits in the wall of outer cylinder and temperature gradient increased the flow instability.

Influence of Local Ultrasonic Forcing on a Turbulent Boundary layer (국소적 초음파 가진이 난류경계층에 미치는 영향)

  • Park, Young-Soo;Sung, Hyung-Jin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.17-22
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. Stereoscopic particle image velocimetry (SPIV) was used to probe the characteristics of the flow. A ultrasonic forcing system was made by adhering six ultrasonic transducers to the local flat plate. Cavitation which generates uncountable minute air-bubbles having fast wall normal velocity occurs when ultrasonic was projected into water. The SPIV results showed that the wall normal mean velocity is increased in a boundary layer dramatically and the streamwise mean velocity is reduced. The skin friction coefficient ($C_{f}$) decreases $60\%$ and gradually recovers at the downstream. The ultrasonic forcing reduces wall-region streamwise turbulent intensity, however, streamwise turbulent intensity is increased away from the wall. Wall-normal turbulent intensity is almost the same near the wall but it increases away from the wall, In tile vicinity of the wall, Reynold shear stress, sweep strength and production of turbulent kinetic energy were decreased. This suggests that the streamwise vortical structures are lifted by ultrasonic forcing and then skin friction is reduced.

  • PDF

Effects of Rod-roughened Wall on a Turbulent Boundary Layer (막대형 표면조도가 난류경계층에 미치는 영향)

  • Lee, Seung-Hyun;Kim, Jung-Hun;Doh, Deog-Hee;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.518-528
    • /
    • 2008
  • The effects of surface roughness on a turbulent boundary layer (TBL) were investigated using particle image velocimetry (PIV). The roughness elements used were periodically arranged two-dimensional spanwise rods, and the roughness height was ${\kappa}/{\delta}$. Introduction of the roughness elements increased the wake strength and the turbulent stress not only in the roughness sublayer but also in the outer layer. This indicates the existence of interaction between inner and outer layers for 2D rod-roughened wall. Roughness effects on a turbulence structure near the wall were obtained by PIV measurements. Iso-contours of mean velocities and Reynolds stresses in the roughness sublayer showed a very good agreement with previous DNS results.

Comparison of the Characteristics of Green Screen and LED Wall in Virtual Production System

  • Shan, Xinyi;Chung, Jeanhun
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.64-70
    • /
    • 2022
  • In recent years, with the continuous innovation and upgrading of engine software, the real-time rendering technology in film and television has been continuously improved, and the virtual production technology has also developed rapidly. This paper introduces the green screen often used in traditional film production and a virtual production technology based on light-emitting-diode background wall that was proposed and implemented last year. We analyzed the two production methods of virtual production and compared their characteristics. Based on these results, we can better understand the differences and respective advantages of the two production methods. And we also can according to the production budget, production cycle and the creative and technical capabilities of the team make better choices during the production process. We believe virtual production technology will be production in the future to provide a more solid technical guarantee for the development of the film industry, and this work will pave the way for further research on virtual production technology.

A Measurement of Temperature by TLC without Contact and A Study of Thermocapillary Flow under Ground-based Conditions (TLC 비접촉 온도측정과 중력장에서 열모세관 현상 구명)

  • 엄용균;유재봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1071-1075
    • /
    • 2003
  • In a closed square cavity filled with a liquid, a cooled the upper horizontal wail and a heated the lower horizontal wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In such case the flow phenomena near an air bubble under a cooled horizontal wall were investigated. The temperature and the flow fields were studied by using the Thermo-sensitive Liquid-Crystal and the image processing. The qualitative analysis for the temperature and the flow fields were carried out by applying the image processing technique to the original data. Injecting bubble at the center point of upper cooled wall, the symmetry shape of two vortexes near an air bubble was observed. The bubble size increased, the size of velocity and the magnitude of velocity increased. In spite of elapsed time, a pair of two vortexes was the unique and steady-state flow in a square cavity and wasn't induce to the other flow in the surround region.

  • PDF

Fashion retail store facades and the creation of store image and store attitude (파사드가 의류브랜드 점포이미지와 점포태도에 미치는 영향)

  • Seo, Joo-Hyun;Lee, Kyu-Hye
    • The Research Journal of the Costume Culture
    • /
    • v.23 no.3
    • /
    • pp.400-411
    • /
    • 2015
  • Successful use of displays in stores arouses consumers' curiosity, and induces them to purchase a product after a visit. Facade is a word meaning an external front wall of a building, and is usually the first point of visual contact for the consumers. The present study is an empirical investigation of external appearance of a clothing store, with a $2{\times}2{\times}2$ factorial design of facade, show window, and wall surface material designed for the purpose of the study. Dependent variables were store image variables and attitude toward store. A total of 320 questionnaires from male and female consumers were used for the analysis. Facade type and material had significant main and interaction effects, while show window type had no meaningful effects overall. A facade of irregular design prompted significantly higher levels of perceived 'elegance', 'uniqueness', and 'attractiveness' of the store. Material itself did not have significant influence but did have significant interaction effect with facade design. The interaction effect was found in store attitude as well. In order to create a positive store attitude, a concrete material facade should have an irregular design. Companies owning fashion brands should carefully select facade type and wall surface material in the visual merchandising strategies of a store.

Generation of Dataset for Detection of Black Screen in Video Wall Controller (비디오 월 컨트롤러의 블랙 스크린 감지를 위한 데이터셋 생성)

  • Kim, Sung-jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.521-523
    • /
    • 2021
  • Data augmentation are techniques used to increase the amount of data by using small amount of existing data. With the spread of the Internet, we can easily obtain data. However, there are still certain industries, like medicine, where it is difficult to obtain data. The same is true for image data in which a black screen is displayed on video wall controller. Because it is rare that a black screen is displayed during operation, it is not easy to obtain an image with a black screen. We propose a DCGAN based architecture that generate dataset using a small amount of black screen image.

  • PDF

The Use of Transabdominal Ultrasound in Inflammatory Bowel Disease

  • Jiro Hata;Hiroshi Imamura
    • Korean Journal of Radiology
    • /
    • v.23 no.3
    • /
    • pp.308-321
    • /
    • 2022
  • Transabdominal ultrasound (TAUS) is useful in all aspects of lesion screening, monitoring activity, or treating/diagnosing any related complications of inflammatory bowel disease. Its ability to screen or diagnose complications is almost the same as that of other methods, such as CT or MRI. Moreover, its noninvasiveness makes it a first-line examination method. A TAUS image depicting ulcerative colitis will show large intestinal wall thickening that is continuous from the rectum, which is mainly due to mucosal layer thickening, while for Crohn's disease, a TAUS image is characterized by a diversity in the areas affected, distribution, and layer structure. Indicators of activity monitoring include wall thickness, wall structure, and vascular tests that use Doppler ultrasound or contrast agents. While all of these have been reported to be useful, at this time, no single parameter has been established as superior to others; therefore, a comprehensive evaluation of these parameters is justified. In addition, evaluating the elasticity of lesions using elastography is particularly useful for distinguishing between fibrous and inflammatory stenoses. However, the lack of objectivity is the biggest drawback of using ultrasound. Standardizing and popularizing the ultrasound process will be necessary, including scanning methods, equipment settings, and image analysis.

Effects of Fiber Wall Thickness on Paper Properties Using CLSM (CLSM을 이용한 고해과정 중 섬유벽 두께 변화의 종이 특성 영향 분석)

  • 김서환;박종문;김철환
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • Refining in papermaking plays an important role in changing fiber properties as well as paper properties. The major effects of refining on pulp fibers are internal and external fibrillation, fiber shortening, and fines formation. Many workers showed that internal fibrillation of the primary refining effects was most influential in improving paper properties. In particular, refining produces separation of fiber walls into several lamellae, thus causing fiber wall swelling with water penetration. This leads to the increase of fiber flexibility and of fiber-to-fiber contact during drying. If the fibers are very flexible, they will be drawn into close contact with each other by the force of surface tension as the water is removed during the drainage process and drying stages. In order to study the effect of fiber wall delamination on paper properties, cross-sectional image of fibers in a natural condition had to be generated without distortion. Finally, it was well recognized that confocal laser scanning microscope (CLSM) could be one of the most efficient tool for creating and quantifying fiber wall delamination in combination with image analysis technique. In this study, the CLSM could be used not only to observe morphological features of transverse views of swollen fibers refined under low and high intensity, but also to investigate the sequence of fiber wall delamination and fiber wall breakage. From the CLSM images, increasing the specific energy or refining decreased the degree of fiber collapse, fiber cross-sectional area, fiber wall thickness and lumen area. High intensity refining produced more external fibrillation.

  • PDF

Damage and deformation of new precast concrete shear wall with plastic damage relocation

  • Dayang Wang;Qihao Han;Shenchun Xu;Zhigang Zheng;Quantian Luo;Jihua Mao
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.385-403
    • /
    • 2023
  • To avoid premature damage to the connection joints of a conventional precast concrete shear wall, a new precast concrete shear wall system (NPSW) based on a plastic damage relocation design concept was proposed. Five specimens, including one monolithic cast-in-place concrete shear wall (MSW) as a reference and four NPSWs with different connection details (TNPSW, INPSW, HNPSW, and TNPSW-N), were designed and tested by lateral low-cyclic loading. To accurately assess the damage relocation effect and quantify the damage and deformation, digital image correlation (DIC) and conventional data acquisition methods were used in the experimental program. The concrete cracking development, crack area ratio, maximum residual crack width, curvature of the wall panel, lateral displacement, and deformed shapes of the specimens were investigated. The results showed that the plastic damage relocation design concept was effective; the initial cracking occurred at the bottom of the precast shear wall panel (middle section) of the proposed NPSWs. The test results indicated that the crack area ratio and the maximum residual crack width of the NPSWs were less than those of the MSW. The NPSWs were deformed continuously; significant distortions did not occur in their connection regions, demonstrating the merits of the proposed NPSWs. The curvatures of the middle sections of the NPSWs were lower than that of the MSW after a drift ratio of 0.5%. Among the NPSWs, HNPSW demonstrated the best performance, as its crack area ratio, concrete damage, and maximum residual crack width were the lowest.