• 제목/요약/키워드: Image Training Dataset

검색결과 229건 처리시간 0.022초

딥러닝 기반 이미지 자동 레이블링을 활용한 건축물 파사드 데이터세트 구축 기술 개발 (A Development of Façade Dataset Construction Technology Using Deep Learning-based Automatic Image Labeling)

  • 구형모;서지효;추승연
    • 대한건축학회논문집:계획계
    • /
    • 제35권12호
    • /
    • pp.43-53
    • /
    • 2019
  • The construction industry has made great strides in the past decades by utilizing computer programs including CAD. However, compared to other manufacturing sectors, labor productivity is low due to the high proportion of workers' knowledge-based task in addition to simple repetitive task. Therefore, the knowledge-based task efficiency of workers should be improved by recognizing the visual information of computers. A computer needs a lot of training data, such as the ImageNet project, to recognize visual information. This study, aim at proposing building facade datasets that is efficiently constructed by quickly collecting building facade data through portal site road view and automatically labeling using deep learning as part of construction of image dataset for visual recognition construction by the computer. As a method proposed in this study, we constructed a dataset for a part of Dongseong-ro, Daegu Metropolitan City and analyzed the utility and reliability of the dataset. Through this, it was confirmed that the computer could extract the significant facade information of the portal site road view by recognizing the visual information of the building facade image. Additionally, In contribution to verifying the feasibility of building construction image datasets. this study suggests the possibility of securing quantitative and qualitative facade design knowledge by extracting the facade design knowledge from any facade all over the world.

고유특징 정규화 및 추출 기법을 이용한 걸음걸이 바이오 정보 기반 사용자 인식 시스템 (Gait-based Human Identification System using Eigenfeature Regularization and Extraction)

  • 이병윤;홍성준;이희성;김은태
    • 한국지능시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.6-11
    • /
    • 2011
  • 본 논문에서는 고유특징 정규화 및 추출 기법(ERE: Eigenfeature Regularization and Extraction)을 이용한 걸음걸이 바이오 정보 기반 사용자 인식 시스템을 제안한다. 먼저 카메라 센서에서 취득한 걸음걸이 시퀀스로부터 사용자 인식을 위한 특징 정보로 걸음걸이 에너지 영상(GEI: Gait Energy Image)을 생성한다. 학습 단계에서는 갤러리 걸음걸이 에너지 영상에 ERE를 적용하여 정규화된 변환행렬을 획득하여 고유공간(eigenspace)에 사상된 특징정보를 구하고, 검증 단계에서는 걸음걸이 에너지 영상을 학습단계에서 생성한 고유공간에 사상하여 최근접 이웃 분류기를 이용하여 사용자를 인식한다. 제안한 시스템의 유효성 검증을 위해 CASIA 걸음걸이 데이터셋 A를 이용하여 실험하였고, 기존 연구에 비해 인식 정확도 면에서 우수한 성능을 보여주었다.

An active learning method with difficulty learning mechanism for crack detection

  • Shu, Jiangpeng;Li, Jun;Zhang, Jiawei;Zhao, Weijian;Duan, Yuanfeng;Zhang, Zhicheng
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.195-206
    • /
    • 2022
  • Crack detection is essential for inspection of existing structures and crack segmentation based on deep learning is a significant solution. However, datasets are usually one of the key issues. When building a new dataset for deep learning, laborious and time-consuming annotation of a large number of crack images is an obstacle. The aim of this study is to develop an approach that can automatically select a small portion of the most informative crack images from a large pool in order to annotate them, not to label all crack images. An active learning method with difficulty learning mechanism for crack segmentation tasks is proposed. Experiments are carried out on a crack image dataset of a steel box girder, which contains 500 images of 320×320 size for training, 100 for validation, and 190 for testing. In active learning experiments, the 500 images for training are acted as unlabeled image. The acquisition function in our method is compared with traditional acquisition functions, i.e., Query-By-Committee (QBC), Entropy, and Core-set. Further, comparisons are made on four common segmentation networks: U-Net, DeepLabV3, Feature Pyramid Network (FPN), and PSPNet. The results show that when training occurs with 200 (40%) of the most informative crack images that are selected by our method, the four segmentation networks can achieve 92%-95% of the obtained performance when training takes place with 500 (100%) crack images. The acquisition function in our method shows more accurate measurements of informativeness for unlabeled crack images compared to the four traditional acquisition functions at most active learning stages. Our method can select the most informative images for annotation from many unlabeled crack images automatically and accurately. Additionally, the dataset built after selecting 40% of all crack images can support crack segmentation networks that perform more than 92% when all the images are used.

ResNet 모델을 이용한 눈 주변 영역의 특징 추출 및 개인 인증 (Feature Extraction on a Periocular Region and Person Authentication Using a ResNet Model)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제22권12호
    • /
    • pp.1347-1355
    • /
    • 2019
  • Deep learning approach based on convolution neural network (CNN) has extensively studied in the field of computer vision. However, periocular feature extraction using CNN was not well studied because it is practically impossible to collect large volume of biometric data. This study uses the ResNet model which was trained with the ImageNet dataset. To overcome the problem of insufficient training data, we focused on the training of multi-layer perception (MLP) having simple structure rather than training the CNN having complex structure. It first extracts features using the pretrained ResNet model and reduces the feature dimension by principle component analysis (PCA), then trains a MLP classifier. Experimental results with the public periocular dataset UBIPr show that the proposed method is effective in person authentication using periocular region. Especially it has the advantage which can be directly applied for other biometric traits.

강건한 CNN기반 수중 물체 인식을 위한 이미지 합성과 자동화된 Annotation Tool (Synthesizing Image and Automated Annotation Tool for CNN based Under Water Object Detection)

  • 전명환;이영준;신영식;장혜수;여태경;김아영
    • 로봇학회논문지
    • /
    • 제14권2호
    • /
    • pp.139-149
    • /
    • 2019
  • In this paper, we present auto-annotation tool and synthetic dataset using 3D CAD model for deep learning based object detection. To be used as training data for deep learning methods, class, segmentation, bounding-box, contour, and pose annotations of the object are needed. We propose an automated annotation tool and synthetic image generation. Our resulting synthetic dataset reflects occlusion between objects and applicable for both underwater and in-air environments. To verify our synthetic dataset, we use MASK R-CNN as a state-of-the-art method among object detection model using deep learning. For experiment, we make the experimental environment reflecting the actual underwater environment. We show that object detection model trained via our dataset show significantly accurate results and robustness for the underwater environment. Lastly, we verify that our synthetic dataset is suitable for deep learning model for the underwater environments.

영상 내 물체 검출 및 분류를 위한 소규모 데이터 확장 기법 (Data Augmentation Method of Small Dataset for Object Detection and Classification)

  • 김진용;김은경;김성신
    • 로봇학회논문지
    • /
    • 제15권2호
    • /
    • pp.184-189
    • /
    • 2020
  • This paper is a study on data augmentation for small dataset by using deep learning. In case of training a deep learning model for recognition and classification of non-mainstream objects, there is a limit to obtaining a large amount of training data. Therefore, this paper proposes a data augmentation method using perspective transform and image synthesis. In addition, it is necessary to save the object area for all training data to detect the object area. Thus, we devised a way to augment the data and save object regions at the same time. To verify the performance of the augmented data using the proposed method, an experiment was conducted to compare classification accuracy with the augmented data by the traditional method, and transfer learning was used in model learning. As experimental results, the model trained using the proposed method showed higher accuracy than the model trained using the traditional method.

Robust Deep Age Estimation Method Using Artificially Generated Image Set

  • Jang, Jaeyoon;Jeon, Seung-Hyuk;Kim, Jaehong;Yoon, Hosub
    • ETRI Journal
    • /
    • 제39권5호
    • /
    • pp.643-651
    • /
    • 2017
  • Human age estimation is one of the key factors in the field of Human-Robot Interaction/Human-Computer Interaction (HRI/HCI). Owing to the development of deep-learning technologies, age recognition has recently been attempted. In general, however, deep learning techniques require a large-scale database, and for age learning with variations, a conventional database is insufficient. For this reason, we propose an age estimation method using artificially generated data. Image data are artificially generated through 3D information, thus solving the problem of shortage of training data, and helping with the training of the deep-learning technique. Augmentation using 3D has advantages over 2D because it creates new images with more information. We use a deep architecture as a pre-trained model, and improve the estimation capacity using artificially augmented training images. The deep architecture can outperform traditional estimation methods, and the improved method showed increased reliability. We have achieved state-of-the-art performance using the proposed method in the Morph-II dataset and have proven that the proposed method can be used effectively using the Adience dataset.

자율주행 영상데이터의 신뢰도 향상을 위한 AI모델 기반 데이터 자동 정제 (AI Model-Based Automated Data Cleaning for Reliable Autonomous Driving Image Datasets)

  • 김가나;김학일
    • 방송공학회논문지
    • /
    • 제28권3호
    • /
    • pp.302-313
    • /
    • 2023
  • 본 연구는 과학기술정보통신부가 2017년부터 1조원 이상을 투자한 'AI Hub 댐' 사업에서 구축된 인공지능 모델 학습데이터의 품질관리를 자동화할 수 있는 프레임워크의 개발을 목표로 한다. 자율주행 개발에 사용되는 AI 모델 학습에는 다량의 고품질의 데이터가 필요하며, 가공된 데이터를 검수자가 데이터 자체의 이상을 검수하고 유효함을 증명하는 데는 여전히 어려움이 있으며 오류가 있는 데이터로 학습된 모델은 실제 상황에서 큰 문제를 야기할 수 있다. 본 논문에서는 이상 데이터를 제거하는 신뢰할 수 있는 데이터셋 정제 프레임워크를 통해 모델의 인식 성능을 향상시키는 전략을 소개한다. 제안하는 방법은 인공지능 학습용 데이터 품질관리 가이드라인의 지표를 기반으로 설계되었다. 한국정보화진흥원의 AI Hub을 통해 공개된 자율주행 데이터셋에 대한 실험을 통해 프레임워크의 유효성을 증명하였고, 이상 데이터가 제거된 신뢰할 수 있는 데이터셋으로 재구축될 수 있음을 확인하였다.

3차원 의료 영상의 영역 분할을 위한 효율적인 데이터 보강 방법 (An Efficient Data Augmentation for 3D Medical Image Segmentation)

  • 박상근
    • 융복합기술연구소 논문집
    • /
    • 제11권1호
    • /
    • pp.1-5
    • /
    • 2021
  • Deep learning based methods achieve state-of-the-art accuracy, however, they typically rely on supervised training with large labeled datasets. It is known in many medical applications that labeling medical images requires significant expertise and much time, and typical hand-tuned approaches for data augmentation fail to capture the complex variations in such images. This paper proposes a 3D image augmentation method to overcome these difficulties. It allows us to enrich diversity of training data samples that is essential in medical image segmentation tasks, thus reducing the data overfitting problem caused by the fact the scale of medical image dataset is typically smaller. Our numerical experiments demonstrate that the proposed approach provides significant improvements over state-of-the-art methods for 3D medical image segmentation.

Two-Stream Convolutional Neural Network for Video Action Recognition

  • Qiao, Han;Liu, Shuang;Xu, Qingzhen;Liu, Shouqiang;Yang, Wanggan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3668-3684
    • /
    • 2021
  • Video action recognition is widely used in video surveillance, behavior detection, human-computer interaction, medically assisted diagnosis and motion analysis. However, video action recognition can be disturbed by many factors, such as background, illumination and so on. Two-stream convolutional neural network uses the video spatial and temporal models to train separately, and performs fusion at the output end. The multi segment Two-Stream convolutional neural network model trains temporal and spatial information from the video to extract their feature and fuse them, then determine the category of video action. Google Xception model and the transfer learning is adopted in this paper, and the Xception model which trained on ImageNet is used as the initial weight. It greatly overcomes the problem of model underfitting caused by insufficient video behavior dataset, and it can effectively reduce the influence of various factors in the video. This way also greatly improves the accuracy and reduces the training time. What's more, to make up for the shortage of dataset, the kinetics400 dataset was used for pre-training, which greatly improved the accuracy of the model. In this applied research, through continuous efforts, the expected goal is basically achieved, and according to the study and research, the design of the original dual-flow model is improved.