• Title/Summary/Keyword: Image Tamper Detection

Search Result 25, Processing Time 0.026 seconds

Fragile Watermarking Based on LBP for Blind Tamper Detection in Images

  • Zhang, Heng;Wang, Chengyou;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.385-399
    • /
    • 2017
  • Nowadays, with the development of signal processing technique, the protection to the integrity and authenticity of images has become a topic of great concern. A blind image authentication technology with high tamper detection accuracy for different common attacks is urgently needed. In this paper, an improved fragile watermarking method based on local binary pattern (LBP) is presented for blind tamper location in images. In this method, a binary watermark is generated by LBP operator which is often utilized in face identification and texture analysis. In order to guarantee the safety of the proposed algorithm, Arnold transform and logistic map are used to scramble the authentication watermark. Then, the least significant bits (LSBs) of original pixels are substituted by the encrypted watermark. Since the authentication data is constructed from the image itself, no original image is needed in tamper detection. The LBP map of watermarked image is compared to the extracted authentication data to determine whether it is tampered or not. In comparison with other state-of-the-art schemes, various experiments prove that the proposed algorithm achieves better performance in forgery detection and location for baleful attacks.

A Tamper-Detection Scheme for BTC-Compressed Images with High-Quality Images

  • Nguyen, Thai-Son;Chang, Chin-Chen;Chung, Ting-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.2005-2021
    • /
    • 2014
  • This paper proposes a novel image authentication scheme, aiming at tampering detection for block truncation coding (BTC) compressed image. The authentication code is generated by using the random number generator with a seed, and the size of the authentication code is based on the user's requirement, with each BTC-compressed image block being used to carry the authentication code using the data hiding method. In the proposed scheme, to obtain a high-quality embedded image, a reference table is used when the authentication code is embedded. The experimental results demonstrate that the proposed scheme achieves high-quality embedded images and guarantees the capability of tamper detection.

Region-based scalable self-recovery for salient-object images

  • Daneshmandpour, Navid;Danyali, Habibollah;Helfroush, Mohammad Sadegh
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.109-119
    • /
    • 2021
  • Self-recovery is a tamper-detection and image recovery methods based on data hiding. It generates two types of data and embeds them into the original image: authentication data for tamper detection and reference data for image recovery. In this paper, a region-based scalable self-recovery (RSS) method is proposed for salient-object images. As the images consist of two main regions, the region of interest (ROI) and the region of non-interest (RONI), the proposed method is aimed at achieving higher reconstruction quality for the ROI. Moreover, tamper tolerability is improved by using scalable recovery. In the RSS method, separate reference data are generated for the ROI and RONI. Initially, two compressed bitstreams at different rates are generated using the embedded zero-block coding source encoder. Subsequently, each bitstream is divided into several parts, which are protected through various redundancy rates, using the Reed-Solomon channel encoder. The proposed method is tested on 10 000 salient-object images from the MSRA database. The results show that the RSS method, compared to related methods, improves reconstruction quality and tamper tolerability by approximately 30% and 15%, respectively.

A Hybrid Digital Watermarking Technique for Copyright Protection and Tamper Detection on Still images (정지영상에서 저작권 보호 및 위변조 검출을 위한 하이브리드 디지털 워터마킹 기법)

  • Yoo Kil-Sang;Song Geun-Sil;Choi Hyuk;Lee Won-Hyung
    • Journal of Internet Computing and Services
    • /
    • v.4 no.4
    • /
    • pp.27-34
    • /
    • 2003
  • Digital image manipulation software is now readily available on personal computers. It is therefore very simple to tamper with any image and make it available to others. Therefore. copyright protection of digital contents and insurance of digital image integrity become major issues. In this paper, we propose a hybrid watermarking method to identify locations of tampered region as well as copyright. Our proposed algorithms embed the PN-sequence into low frequency sub-band of the wavelet transform domain and it doesn't need the original image in extraction procedure. The experimental results show good robustness against any signal processing with tamper detection on still image.

  • PDF

A REVERSIBLE IMAGE AUTHENTICATION METHOD FREE FROM LOCATION MAP AND PARAMETER MEMORIZATION

  • Han, Seung-Wu;Fujiyoshi, Masaaki;Kiya, Hitoshi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.572-577
    • /
    • 2009
  • This paper proposes a novel reversible image authentication method that requires neither location map nor memorization of parameters. The proposed method detects image tampering and further localizes tampered regions. Though this method once distorts an image to hide data for tamper detection, it recovers the original image from the distorted image unless no tamper is applied to the image. The method extracts hidden data and recovers the original image without memorization of any location map that indicates hiding places and of any parameter used in the algorithm. This feature makes the proposed method practical. Simulation results show the effectiveness of the proposed method.

  • PDF

A High-Quality Reversible Image Authentication Scheme Based on Adaptive PEE for Digital Images

  • Nguyen, Thai-Son;Chang, Chin-Chen;Shih, Tso-Hsien
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.395-413
    • /
    • 2016
  • Image authentication is a technique aiming at protecting the integrity of digital images. Reversible image authentication has attracted much attention of researcher because it allows to authenticate tampered regions in the image and to reconstruct the stego image to its original version losslessly. In this paper, we propose a new, reversible image authentication scheme based on adaptive prediction error expansion (PEE) technique. In the proposed scheme, each image block is classified into smooth or complex regions. Then, according to the characteristic of each block, the authentication code is embedded adaptively to achieve high performance of tamper detection. The experimental results demonstrated that the proposed scheme achieves good quality of stego images. In addition, the proposed scheme has ability to reconstruct the stego image to its original version, if no modification is performed on it. Also demonstrated in the experimental results, the proposed scheme provides higher accuracy of tamper detection than state-of-the-art schemes.

A Study on the Image Tamper Detection using Digital Signature (디지털 서명을 이용한 영상의 위변조 검출에 관한 연구)

  • Woo, Chan-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4912-4917
    • /
    • 2015
  • Fragile watermarking is a technique to insert a watermark into an image without significantly degrading its visual quality so that the watermark can be extracted for the purposes of authentication or integrity verification. And the watermark for authentication and integrity verification should be erased easily when the image is changed by filtering etc. In this paper, we propose a image block-wise watermarking method for image tamper proofing using digital signature. In the proposed method, a digital signature is generated from the hash code of the initialized image block. And The proposed method is able to detect the tampered parts of the image without testing the entire block of the watermarked image.

Secured Telemedicine Using Whole Image as Watermark with Tamper Localization and Recovery Capabilities

  • Badshah, Gran;Liew, Siau-Chuin;Zain, Jasni Mohamad;Ali, Mushtaq
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.601-615
    • /
    • 2015
  • Region of interest (ROI) is the most informative part of a medical image and mostly has been used as a major part of watermark. Various shapes ROIs selection have been reported in region-based watermarking techniques. In region-based watermarking schemes an image region of non-interest (RONI) is the second important part of the image and is used mostly for watermark encapsulation. In online healthcare systems the ROI wrong selection by missing some important portions of the image to be part of ROI can create problem at the destination. This paper discusses the complete medical image availability in original at destination using the whole image as a watermark for authentication, tamper localization and lossless recovery (WITALLOR). The WITALLOR watermarking scheme ensures the complete image security without of ROI selection at the source point as compared to the other region-based watermarking techniques. The complete image is compressed using the Lempel-Ziv-Welch (LZW) lossless compression technique to get the watermark in reduced number of bits. Bits reduction occurs to a number that can be completely encapsulated into image. The watermark is randomly encapsulated at the least significant bits (LSBs) of the image without caring of the ROI and RONI to keep the image perceptual degradation negligible. After communication, the watermark is retrieved, decompressed and used for authentication of the whole image, tamper detection, localization and lossless recovery. WITALLOR scheme is capable of any number of tampers detection and recovery at any part of the image. The complete authentic image gives the opportunity to conduct an image based analysis of medical problem without restriction to a fixed ROI.

A Hybrid Watermarking Scheme for Color Images (컬러 영상을 위한 하이브리드 워터마킹)

  • Lee Hyun-Suk;Oktavia Vivi;Kim Mi-Ae;Lee Won-Hyung
    • Journal of Internet Computing and Services
    • /
    • v.5 no.3
    • /
    • pp.73-86
    • /
    • 2004
  • This paper presents a hybrid digital watermarking scheme for color images, We insert two watermarks in the DWT domain using spread-spectrum correlation-based watermarking in luminance component of the color image and in spatial domain using pixel-value substitution of blue channel of color image. The objectives of this paper are to have the watermark robust to common signal processing and to detect any changes on the watermarked image for tamper detection at the same time. This watermark scheme will have the robustness characteristic as typical in frequency domain watermark, and also ability to detect any changes on the image (tamper detection).

  • PDF

Review on Digital Image Watermarking Based on Singular Value Decomposition

  • Wang, Chengyou;Zhang, Yunpeng;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1585-1601
    • /
    • 2017
  • With the rapid development of computer technologies, a number of image modification methods have emerged, which have great impacts on the security of image information. Therefore, it is necessary to protect the integrity and authenticity of digital images, and digital watermarking technique consequently becomes a research hotspot. An effort is made to survey and analyze advancements of image watermarking algorithms based on singular value decomposition (SVD) in recent years. In the first part, an overview of watermarking techniques is presented and then mathematical theory of SVD is given. Besides, SVD watermarking model, features, and evaluation indexes are demonstrated. Various SVD-based watermarking algorithms, as well as hybrid watermarking algorithms based on SVD and other transforms for copyright protection, tamper detection, location, and recovery are reviewed in the last part.