• Title/Summary/Keyword: Image Sharpening

Search Result 127, Processing Time 0.028 seconds

Evaluation of Block-based Sharpening Algorithms for Fusion of Hyperion and ALI Imagery (Hyperion과 ALI 영상의 융합을 위한 블록 기반의 융합기법 평가)

  • Kim, Yeji;Choi, Jaewan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.63-70
    • /
    • 2015
  • An Image fusion, or Pansharpening is a methodology of increasing the spatial resolution of image with low-spatial resolution using high-spatial resolution images. In this paper, we have performed an image fusion of hyperspectral imagery by using panchromatic image with high-spatial resolution, multispectral and hyperspectral images with low-spatial resolution, which had been acquired by ALI and Hyperion of EO-1 satellite sensors. The study has been mainly focused on evaluating performance of fusion process following to the image fusion methodology of the block association, which had applied to ALI and Hyperion dataset by considering spectral characteristics between multispectral and hyperspectral images. The results from experiments have been identified that the proposed algorithm efficiently improved the spatial resolution and minimized spectral distortion comparing with results from a fusion of the only panchromatic and hyperspectral images and the existing block-based fusion method. Through the study in a proposed algorithm, we could concluded in that those applications of airborne hyperspectral sensors and various hyperspectral satellite sensors will be launched at future by enlarge its usages.

Color Image Zero-Watermarking on DCT Domain through Comparison of Two Channels (두 채널 비교를 통한 DCT 영역 컬러 이미지 제로-워터마킹)

  • Kim, HyoungDo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.11-20
    • /
    • 2015
  • Digital watermarking provides electronic means for proving the copyrights of distributed digital media copies. Research on digital watermarking for images is recently directed toward that for color images extensively used in real life, based on the substantial results in digital watermarking for gray-scale images. Color images have multiple channels, each of which corresponds to a gray-scale image. While there are some watermarking techniques for color images that just apply those for gray-scale images to one channel of the color images, the correlation characteristics between the channels are not considered in them. This paper proposes a zero-watermarking technique that makes keys via combining an image dependent watermark, created through comparing two channels of the color image and copyright watermark scrambled. Due to zero-watermarking, it does not change anything of cover(host) images. Watermark images are robust against some common attacks such as sharpening, blurring, JPEG lossy compression, scaling, and cropping.

The estimation of camera calibration parameters using the properties of vanishing point at the paved and unpaved road (무한원점의 성질을 이용한 포장 및 비포장 도로에서의 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Jeong, Myeong-Hee;Rho, Do-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.178-180
    • /
    • 2006
  • In general, camera calibration has to be gone ahead necessarily to estimate a position and an orientation of the object exactly using a camera. Autonomous land system in order to run a vehicle autonomously needs a camera calibration method appling a camera and various road environment. Camera calibration is to prescribe the confrontation relation between third dimension space and the image plane. It means to find camera calibration parameters. Camera calibration parameters using the paved road and the unpaved road are estimated. The proposed algorithm has been detected through the image processing after obtaining the paved road and the unpaved road. There is able to detect easily edges because the road lanes exist in the raved road. Image processing method is two. One is a method on the paved road. Image is segmentalized using open, dilation, and erosion. The other is a method on the unpaved road. Edges are detected using blur and sharpening. So it has been made use of Hough transformation in order to detect the correct straight line because it has less error than least-square method. In addition to, this thesis has been used vanishing point' principle. an algorithm suggests camera calibration method using Hough transformation and vanishing point. When the algorithm was applied, the result of focal length was about 10.7[mm] and RMS errors of rotation were 0.10913 and 0.11476 ranges. these have the stabilized ranges comparatively. This shows that this algorithm can be applied to camera calibration on the raved and unpaved road.

  • PDF

Performance Evaluation of Pansharpening Algorithms for WorldView-3 Satellite Imagery

  • Kim, Gu Hyeok;Park, Nyung Hee;Choi, Seok Keun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.413-423
    • /
    • 2016
  • Worldview-3 satellite sensor provides panchromatic image with high-spatial resolution and 8-band multispectral images. Therefore, an image-sharpening technique, which sharpens the spatial resolution of multispectral images by using high-spatial resolution panchromatic images, is essential for various applications of Worldview-3 images based on image interpretation and processing. The existing pansharpening algorithms tend to tradeoff between spectral distortion and spatial enhancement. In this study, we applied six pansharpening algorithms to Worldview-3 satellite imagery and assessed the quality of pansharpened images qualitatively and quantitatively. We also analyzed the effects of time lag for each multispectral band during the pansharpening process. Quantitative assessment of pansharpened images was performed by comparing ERGAS (Erreur Relative Globale Adimensionnelle de Synthèse), SAM (Spectral Angle Mapper), Q-index and sCC (spatial Correlation Coefficient) based on real data set. In experiment, quantitative results obtained by MRA (Multi-Resolution Analysis)-based algorithm were better than those by the CS (Component Substitution)-based algorithm. Nevertheless, qualitative quality of spectral information was similar to each other. In addition, images obtained by the CS-based algorithm and by division of two multispectral sensors were shaper in terms of spatial quality than those obtained by the other pansharpening algorithm. Therefore, there is a need to determine a pansharpening method for Worldview-3 images for application to remote sensing data, such as spectral and spatial information-based applications.

Hybrid Watermarking Technique using DWT Subband Structure and Spatial Edge Information (DWT 부대역구조와 공간 윤곽선정보를 이용한 하이브리드 워터마킹 기술)

  • 서영호;김동욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.706-715
    • /
    • 2004
  • In this paper, to decide the watermark embedding positions and embed the watermark we use the subband tee structure which is presented in the wavelet domain and the edge information in the spatial domain. The significant frequency region is estimated by the subband searching from the higher frequency subband to the lower frequency subband. LH1 subband which has the higher frequency in tree structure of the wavelet domain is divided into 4${\times}$4 submatrices, and the threshold which is used in the watermark embedding is obtained by the blockmatrix which is consists by the average of 4${\times}$4 submatrices. Also the watermark embedding position, Keymap is generated by the blockmatrix for the energy distribution in the frequency domain and the edge information in the spatial domain. The watermark is embedded into the wavelet coefficients using the Keymap and the random sequence generated by LFSR(Linear feedback shift register). Finally after the inverse wavelet transform the watermark embedded image is obtained. the proposed watermarking algorithm showed PSNR over 2㏈ and had the higher results from 2% to 8% in the comparison with the previous research for the attack such as the JPEG compression and the general image processing just like blurring, sharpening and gaussian noise.

Deep Learning Algorithm for Simultaneous Noise Reduction and Edge Sharpening in Low-Dose CT Images: A Pilot Study Using Lumbar Spine CT

  • Hyunjung Yeoh;Sung Hwan Hong;Chulkyun Ahn;Ja-Young Choi;Hee-Dong Chae;Hye Jin Yoo;Jong Hyo Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1850-1857
    • /
    • 2021
  • Objective: The purpose of this study was to assess whether a deep learning (DL) algorithm could enable simultaneous noise reduction and edge sharpening in low-dose lumbar spine CT. Materials and Methods: This retrospective study included 52 patients (26 male and 26 female; median age, 60.5 years) who had undergone CT-guided lumbar bone biopsy between October 2015 and April 2020. Initial 100-mAs survey images and 50-mAs intraprocedural images were reconstructed by filtered back projection. Denoising was performed using a vendor-agnostic DL model (ClariCT.AITM, ClariPI) for the 50-mAS images, and the 50-mAs, denoised 50-mAs, and 100-mAs CT images were compared. Noise, signal-to-noise ratio (SNR), and edge rise distance (ERD) for image sharpness were measured. The data were summarized as the mean ± standard deviation for these parameters. Two musculoskeletal radiologists assessed the visibility of the normal anatomical structures. Results: Noise was lower in the denoised 50-mAs images (36.38 ± 7.03 Hounsfield unit [HU]) than the 50-mAs (93.33 ± 25.36 HU) and 100-mAs (63.33 ± 16.09 HU) images (p < 0.001). The SNRs for the images in descending order were as follows: denoised 50-mAs (1.46 ± 0.54), 100-mAs (0.99 ± 0.34), and 50-mAs (0.58 ± 0.18) images (p < 0.001). The denoised 50-mAs images had better edge sharpness than the 100-mAs images at the vertebral body (ERD; 0.94 ± 0.2 mm vs. 1.05 ± 0.24 mm, p = 0.036) and the psoas (ERD; 0.42 ± 0.09 mm vs. 0.50 ± 0.12 mm, p = 0.002). The denoised 50-mAs images significantly improved the visualization of the normal anatomical structures (p < 0.001). Conclusion: DL-based reconstruction may enable simultaneous noise reduction and improvement in image quality with the preservation of edge sharpness on low-dose lumbar spine CT. Investigations on further radiation dose reduction and the clinical applicability of this technique are warranted.

A Comparative Study on the Possibility of Land Cover Classification of the Mosaic Images on the Korean Peninsula (한반도 모자이크 영상의 토지피복분류 활용 가능성 탐색을 위한 비교 연구)

  • Moon, Jiyoon;Lee, Kwang Jae
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1319-1326
    • /
    • 2019
  • The KARI(Korea Aerospace Research Institute) operates the government satellite information application consultation to cope with ever-increasing demand for satellite images in the public sector, and carries out various support projects including the generation and provision of mosaic images on the Korean Peninsula every year to enhance user convenience and promote the use of satellite images. In particular, the government has wanted to increase the utilization of mosaic images on the Korean Peninsula and seek to classify and update mosaic images so that users can use them in their businesses easily. However, it is necessary to test and verify whether the classification results of the mosaic images can be utilized in the field since the original spectral information is distorted during pan-sharpening and color balancing, and there is a limitation that only R, G, and B bands are provided. Therefore, in this study, the reliability of the classification result of the mosaic image was compared to the result of KOMPSAT-3 image. The study found that the accuracy of the classification result of KOMPSAT-3 image was between 81~86% (overall accuracy is about 85%), while the accuracy of the classification result of mosaic image was between 69~72% (overall accuracy is about 72%). This phenomenon is interpreted not only because of the distortion of the original spectral information through pan-sharpening and mosaic processes, but also because NDVI and NDWI information were extracted from KOMPSAT-3 image rather than from the mosaic image, as only three color bands(R, G, B) were provided. Although it is deemed inadequate to distribute classification results extracted from mosaic images at present, it is believed that it will be necessary to explore ways to minimize the distortion of spectral information when making mosaic images and to develop classification techniques suitable for mosaic images as well as the provision of NIR band information. In addition, it is expected that the utilization of images with limited spectral information could be increased in the future if related research continues, such as the comparative analysis of classification results by geomorphological characteristics and the development of machine learning methods for image classification by objects of interest.

Threshold Selection Method for Capacity Optimization of the Digital Watermark Insertion (디지털 워터마크의 삽입용량 최적화를 위한 임계값 선택방법)

  • Lee, Kang-Seung;Park, Ki-Bum
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.49-59
    • /
    • 2009
  • In this paper a watermarking algorithm is proposed to optimize the capacity of the digital watermark insertion in an experimental threshold using the characteristics of human visual system(HVS), adaptive scale factors, and weight functions based on discrete wavelet transform. After the original image is decomposed by a 3-level discrete wavelet transform, the watermarks for capacity optimization are inserted into all subbands except the baseband, by applying the important coefficients from the experimental threshold in the wavelet region. The adaptive scale factors and weight functions based on HVS are considered for the capacity optimization of the digital watermark insertion in order to enhance the robustness and invisibility. The watermarks are consisted of gaussian random sequences and detected by correlation. The experimental results showed that this algorithm can preserve a fine image quality against various attacks such as the JPEG lossy compression, noise addition, cropping, blurring, sharpening, linear and non-linear filtering, etc.

  • PDF

Accuracy Assessment of Sharpening Algorithms of Thermal Infrared Image Based on UAV (UAV 기반 TIR 영상의 융합 기법 정확도 평가)

  • Park, Sang Wook;Choi, Seok Keun;Choi, Jae Wan;Lee, Seung Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.555-563
    • /
    • 2018
  • Thermal infrared images have the characteristic of being able to detect objects that can not be seen with the naked eye and have the advantage of easily obtaining information of inaccessible areas. However, TIR (Thermal InfraRed) images have a relatively low spatial resolution. In this study, the applicability of the pansharpening algorithm used for satellite imagery on images acquired by the UAV (Unmanned Aerial Vehicle) was tested. RGB image have higher spatial resolution than TIR images. In this study, pansharpening algorithm was applied to TIR image to create the images which have similar spatial resolution as RGB images and have temperature information in it. Experimental results show that the pansharpening algorithm using the PC1 band and the average of RGB band shows better results for the quantitative evaluation than the other bands, and it has been confirmed that pansharpening results by ATWT (${\grave{A}}$ Trous Wavelet Transform) exhibit superior spectral resolution and spatial resolution than those by HPF (High-Pass Filter) and SFIM (Smoothing Filter-based Intensity Modulation) pansharpening algorithm.

A Study to Improve the Classification Accuracy of Mosaic Image over Korean Peninsula: Using PCA and RGB Indices (한반도 모자이크 영상의 분류 정확도 향상 기법 연구: PCA 기법과 RGB 지수를 활용하여)

  • Moon, Jiyoon;Lee, Kwangjae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1945-1953
    • /
    • 2022
  • Korea Aerospace Research Institute produces mosaic images of the Korean Peninsula every year to promote the use of satellite images and provides them to users in the public sector. However, since the pan-sharpening and color balancing methodologies are applied during the mosaic image processing, the original spectral information is distorted. In addition, there is a limit to analyze using mosaic images as mosaic images provide only Red, Green and Blue bands excluding Near Infrared (NIR) band. Therefore, in order to compensate for these limitations, this study applied the Principal Component Analysis (PCA) technique and indices extracted from R, G, B bands together for image classification and compared the classification results. As a result of the analysis, the accuracy of the mosaic image classification result was about 67.51%, while the accuracy of the image classification result using both PCA and RGB indices was about 75.86%, confirming that the accuracy of the image classification result can be improved. As a result of comparing the PCA and the RGB indices, the accuracy of the image classification result was about 64.10% and 74.05% respectively. Through this, it was confirmed that the classification accuracy using the RGB indices was higher among the two techniques, and implications were derived that it was important to use high quality reference or supplementary data. In the future, additional indices and techniques are needed to improve the classification and analysis results of mosaic images, and related research is expected to increase the utilization of images that provide only R, G, B or limited spectral information.