• 제목/요약/키워드: Image Segmentation and Recognition

검색결과 324건 처리시간 0.027초

ROS 기반 지능형 무인 배송 로봇 시스템의 구현 (Implementation of ROS-Based Intelligent Unmanned Delivery Robot System)

  • 공성진;이원창
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.610-616
    • /
    • 2023
  • 본 논문에서는 Robot Operating System(ROS) 기반의 모바일 매니퓰레이터(Manipulator)를 이용한 무인 배송 로봇 시스템을 구현하고 시스템 구현을 위해 사용된 기술에 대해 소개한다. 로봇은 엘리베이터를 이용해 건물 내부에서 자율주행이 가능한 모바일 로봇과 진공 펌프를 부착한 Selective Compliance Assembly Robot Arm(SCARA)-Type의 매니퓰레이터로 구성된다. 로봇은 매니퓰레이터에 부착된 카메라를 이용하여 이미지 분할과 모서리 검출을 통해 배송물을 들어올리기 위한 위치와 자세를 결정할 수 있다. 제안된 시스템은 스마트폰 앱 및 ROS와 연동된 웹서버를 통해 배송 현황을 조회하고 로봇의 실시간 위치를 파악할 수 있도록 사용자 인터페이스를 가지고 있으며, You Only Look Once(YOLO)와 Optical Character Recognition(OCR)을 통해 배송 스테이션에서 배송물과 주소지를 인식한다. 아울러 4층 건물 내부에서 진행한 배송 실험을 통해 시스템의 유효성을 검증하였다.

심층신경망 기반 우주파편 영상 추적시스템 인식모델에 대한 연구 (A Study on the Deep Neural Network based Recognition Model for Space Debris Vision Tracking System)

  • 임성민;김진형;최원섭;김해동
    • 한국항공우주학회지
    • /
    • 제45권9호
    • /
    • pp.794-806
    • /
    • 2017
  • 지속적으로 우주파편이 증가하고 있는 상황에서 국가 우주자산을 안전하게 보호하고 우주개발국으로서 우주환경 보호에 관심을 가지는 것은 중요하다. 우주파편의 급격한 증가를 막기 위한 효과적인 방법 중 하나는 충돌위험이 큰 우주파편들, 그리고 임무가 종료된 폐기위성을 직접 제거해 나가는 것이다. 본 논문에서는 영상기반 우주파편 추적시스템의 안정적인 인식모델을 위해 인공신경망을 적용한 연구에 대해 다루었다. 한국항공우주연구원에서 개발한 지상기반 우주쓰레기 청소위성 테스트베드인 KARICAT을 활용하여 우주환경이 모사된 영상을 획득하였고, 깊이불연속성에 기인한 영상분할 후 각 객체에 대한 구조 및 색상 기반 특징을 부호화한 벡터를 추출하였다. 특징벡터는 3차원 표면적, 점군의 주성분 벡터, 2차원 형상정보, 색상기반 정보로 구성되어있으며, 이 범주를 기반으로 분리한 특징벡터를 입력으로 하는 인공신경망 모델을 설계하였다. 또한 인공신경망의 성능 향상을 위해 입력되는 특징벡터의 범주에 따라 모델을 분할하여 각 모델 별 학습 후 앙상블기법을 적용하였다. 적용 결과 앙상블 기법에 따른 인식 모델의 성능 향상을 확인하였다.

어안 렌즈 카메라 영상을 이용한 기절동작 인식 (Development of a Fall Detection System Using Fish-eye Lens Camera)

  • 소인미;한대경;강선경;김영운;정성태
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권4호
    • /
    • pp.97-103
    • /
    • 2008
  • 이 논문은 응급상황을 인식하기 위하여 어안렌즈를 통해 획득된 영상을 이용하여 기절 동작을 인식하는 방법을 제안한다. 거실의 천장 중앙에 위치한 어안렌즈(fish-eye lens)를 장착한 카메라로부터 영상을 입력 받은 뒤, 가우시안 혼합 모델 기반의 적응적 배경 모델링 방법을 이용하여 전경 픽셀을 추출한다. 그리고 연결되어 있는 전경픽셀 영역들의 외곽점들을 추적하여 타원으로 매핑한다. 이 타원을 추적하면서 어안 렌즈 영상을 투시 영상으로 변환한 다음 타원의 크기 변화, 위치 변화, 이동 속도정보를 추출하여 이동과 정지 및 움직임이 기절동작과 유사한지를 판단한다. 실험 결과 어안 렌즈 영상을 그대로 사용하는 것보다 투시 영상으로 변환하여 타원의 크기변화, 위치변화, 이동속도 정보를 추출하는 방법이 보다 높은 인식률을 보였다.

  • PDF

IKONOS 컬러 입체영상을 이용한 대규모 도심지역의 3차원 건물복원 (3-D Building Reconstruction from Standard IKONOS Stereo Products in Dense Urban Areas)

  • 이석군;박정환
    • 대한토목학회논문집
    • /
    • 제26권3D호
    • /
    • pp.535-540
    • /
    • 2006
  • 본 논문에서는 고해상도 컬러 입체영상을 활용하여 도심지역의 3차원 건물정보를 효율적으로 복원하기 위한 일련의 처리방법을 제안하고자 한다. 본 연구에서 제안된 방법은 BDT 기법을 활용한 건물 추출, Hausdorff 거리와 컬러인덱싱 기법을 활용한 영상정합, 마지막으로 사진측량기법을 활용한 건물복원 등의 3단계의 처리과정을 포함하고 있다. 제안된 알고리즘의 실험은 고해상도 위성영상의 대표격인 IKONOS 컬러 입체영상을 대상으로 수행되었으며, 실험을 통해 건물추출에 있어서 영상의 배경부분과 건물부분의 밝기값의 분산을 증가시키는 BDT 기법이 건물추출에 우수함을 확인할 수 있었다. 또한, 2가지 건물인식기법을 활용한 영상정합 과정에 있어서도 컬러정보와 경계정보를 모두 사용할 경우 대부분의 추출건물들을 자동인식하고 이를 초기위치로 원활한 영상정합이 수행될 수 있음을 확인하였다. 최종적으로 실험지역에 대한 3차원 건물정보는 전방 다항식비례모형을 통해 획득되었으며 기준자료와의 비교를 통해 정확도 분석을 수행하였다.

YOLO와 OCR 알고리즘에 기반한 시각 장애우를 위한 유통기한 알림 시스템 (Expiration Date Notification System Based on YOLO and OCR algorithms for Visually Impaired Person)

  • 김민수;문미경;한창희
    • 한국전자통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.1329-1338
    • /
    • 2021
  • 점자를 제외한 시각 장애우들이 유통기한을 확인할 수 있는 효과적인 방법이 거의 개발되어 있지 않으며, 이로 인하여 시각 장애우들의 식품 안전성이 위협받고 있다. 본 연구에서는 시각 장애우의 식품 안전성 확보를 위해 실시간 객체 인식 알고리즘(you only look once, YOLO) 및 광학 문자 인식 (optical character recognition, OCR)에 기반한 유통기한 알림 시스템을 개발했다. 제안하는 시스템은 총 4가지 단계로 시각 장애우에게 유통기한 정보를 전달한다: (1) 표적 제품의 바코드 스캔을 통한 제품 확인 (2) 실시간으로 입력되는 제품 영상에서 YOLO 알고리즘을 활용하여 유통기한이 표기된 이미지 영역 검출; (3) 검출된 이미지 영역에서 OCR 알고리즘을 활용하여 유통기한 문자 인식; (4) Text to Speech (TTS) 기술을 활용하여 유통기한 정보를 사용자에게 전달. 성능 평가를 위한 온라인 실험 결과, 앞이 보이지 않는 피험자가 개발한 시스템을 사용해서 제품의 유통기한을 평균 86%의 높은 정확도로 확인할 수 있음이 검증되었다. 이러한 결과는 제안하는 시스템이 저시력자를 포함한 시각 장애우들의 식품 안전성 확보에 이바지할 수 있음을 보여준다.

대한민국 정부의 코로나 19 브리핑을 기반으로 구축된 수어 데이터셋 연구 (Sign Language Dataset Built from S. Korean Government Briefing on COVID-19)

  • 심호현;성호렬;이승재;조현중
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권8호
    • /
    • pp.325-330
    • /
    • 2022
  • 본 논문은 한국 수어에 대하여 수어 인식, 수어 번역, 수어 영상 시분할과 같은 수어에 관한 딥러닝 연구를 위한 데이터셋의 수집 및 실험을 진행하였다. 수어 연구를 위한 어려움은 2가지로 볼 수 있다. 첫째, 손의 움직임과 손의 방향, 표정 등의 종합적인 정보를 가지는 수어의 특성에 따른 인식의 어려움이 있다. 둘째, 딥러닝 연구를 진행하기 위한 학습데이터의 절대적 부재이다. 현재 알려진 문장 단위의 한국 수어 데이터셋은 KETI 데이터셋이 유일하다. 해외의 수어 딥러닝 연구를 위한 데이터셋은 Isolated 수어와 Continuous 수어 두 가지로 분류되어 수집되며 시간이 지날수록 더 많은 양의 수어 데이터가 수집되고 있다. 하지만 이러한 해외의 수어 데이터셋도 방대한 데이터셋을 필요로 하는 딥러닝 연구를 위해서는 부족한 상황이다. 본 연구에서는 한국 수어 딥러닝 연구를 진행하기 위한 대규모의 한국어-수어 데이터셋을 수집을 시도하였으며 베이스라인 모델을 이용하여 수어 번역 모델의 성능 평가 실험을 진행하였다. 본 논문을 위해 수집된 데이터셋은 총 11,402개의 영상과 텍스트로 구성되었다. 이를 이용하여 학습을 진행할 베이스라인 모델로는 수어 번역 분야에서 SOTA의 성능을 가지고 있는 TSPNet 모델을 이용하였다. 본 논문의 실험에서 수집된 데이터셋에 대한 특성을 정량적으로 보이고, 베이스라인 모델의 실험 결과로는 BLEU-4 score 3.63을 보였다. 또한, 향후 연구에서 보다 정확하게 데이터셋을 수집할 수 있도록, 한국어-수어 데이터셋 수집에 있어서 고려할 점을 평가 결과에 대한 고찰로 제시한다.

고주파 성분을 고려한 AWGN 제거 알고리즘 (AWGN Removal Algorithm Considering High Frequency Components)

  • 천봉원;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.481-483
    • /
    • 2018
  • 최근 전자통신장비의 수요가 증가함에 따라 영상 및 신호처리의 중요성이 높아지고 있다. 하지만 디지털 신호에 발생하는 잡음은 송수신 과정에서 다양한 원인으로 발생하며 장비의 신뢰성 저하 및 오작동을 유발하고 있다. 특히 AWGN은 전자장비 대부분에서 발견할 수 있기 때문에 영상 인식, 추출, 분할 등 여러 분야에서 전처리 과정으로서 AWGN 제거가 필수적으로 이루어진다. 본 논문은 고주파 성분을 고려한 AWGN 제거 알고리즘을 제안하였다. 기존 방법들은 고주파 성분이 많은 영상에서 비교적 미흡한 성능을 보였으며, 이를 보완하기 위해 국부 마스크에 차영상을 가감한 필터 알고리즘을 제시하였다. 그리고 제안한 알고리즘의 성능을 입증하기 위해 PSNR 및 확대 영상을 이용하여 기존 방법과 비교하였다.

  • PDF

시각매체를 위한 병렬처리 시스템 (A Parallel Processing System for Visual Media Applications)

  • 이형;박종원
    • 한국통신학회논문지
    • /
    • 제27권1A호
    • /
    • pp.80-88
    • /
    • 2002
  • 영상과 그래픽 및 비디오와 같은 시각 매체들을 실시간으로 처리하기 위한 구현 기술과 그에 따른 확정성 측면에서 많은 연구들이 진행되고 있는데, 이러한 연구들은 영상처리 전용 프로세서 구현부터 다양한 매체들을 함께 처리할 수 있는 프로세서 구현을 포함하는 범주까지 진행되고 있다. 또한, 다양한 병렬처리 기법들이 실시간 처리를 위한 프로세서의 구현에 적용되고 있다. 본 논문은 이러한 시각매체들을 실시간으로 처리하기 위하여 메모리 시스템과 다수개의 처리기로 구성된 pipelined SIMD 구조를 갖는 병렬처리시스템을 제안한다. 메모리시스템은 m개의 메모리 모듈과 메모리 제어기로 구성되어 있는 다중접근 기억장치로써, m개의 메모리 모듈에서 병렬로 n(=p${\times}$q)개의 데이터에 접근하기 위한 다양한 형태, 즉, 행(1${\times}$pq)과 열(pq${\times}$1) 및 블록 (p${\times}$q) 접근을 제공한다. 제안한 병렬처리시스템에 얼굴인식과 퐁 음영 및 동영상에서의 자동영상분할을 적용하여 시스템 성능을 분석하였다.

IoT 기반의 병원용 물류 로봇의 안전한 운행을 위한 장애물 인식에 관한 연구 (A Study on Object Recognition for Safe Operation of Hospital Logistics Robot Based on IoT)

  • 강민수;임춘화;이재연;최은혜;이상광
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.141-146
    • /
    • 2017
  • 최근 지속적으로 발생하고 있는 메르스와 같은 신종 감염병은 초기발견, 격리, 위기대응 등 많은 대응책을 필요로하고 있으며 아울러 일반인의 문병과 간호 간병 통합서비스 시행 등 병원의 문화가 바뀌는 추세이다. 그러나 병원에서 근무하는 의료인의 자격조건, 규정 등이 까다로와지면서 해외에서는 린넨, 폐기물, 수액 이동 등 로봇으로 가능한 부분은 대체하는 추세이다. 본 연구에서는 병원 내에서 발생하는 각종 물품의 배송 업무를 수행할 수 있는 IoT 기반의 병원 물류 로봇으로 다양한 종류의 물건을 원하는 위치까지 안전하게 이동 할 수 있는 기술에 대하여 연구하였다. 병원 내 로봇의 이동은 사람 또는 사물간 충돌을 발생 시킬 수 있기 때문에 충돌을 최소화 해야 한다. 충돌을 최소화하기 위해서는 로봇의 이동 경로에 사물의 유무를 판단하고 사물이 있다면 이동하는 것인지 아닌지를 인지해야 한다. 그래서 얼굴/전신정보 검출과 3D Vision 영상분할 기술을 이용하여 장애물의 상황 정보를 생성하였다. 생성 된 정보를 활용하여 로봇 이동 범위 내 사물과 사람을 고려한 맵을 생성하여 로봇이 안전하고 효율적으로 운행 될 수 있도록 하였다.

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • 제66권1호
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.