• 제목/요약/키워드: Image Segmentation

검색결과 2,190건 처리시간 0.026초

IPTV에서 컷 검색을 위한 색 분포정보를 이용한 FE-CBIRS (FE-CBIRS Using Color Distribution for Cut Retrieval in IPTV)

  • 구건서
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권1호
    • /
    • pp.91-97
    • /
    • 2009
  • 본 논문은 IPTV에서 방영되는 디지털 콘텐츠에서 검색하고자 하는 컷의 위치 정보를 검색하는데, 이때 색 분포에 관한 특징 정보를 이용한 FE-CBIRS을 제안한다. 기존 CBIRS에서는 색상과 모양에 대한 정보를 추출하여 이미지를 구분하는 특징정보로써 활용하며, 이미지를 세그멘테이션 처리하여 얻은 부분영역 특징정보를 전체 이미지의 특징정보와 함께 사용하여 검색하는 방법을 제시하였다. 또한 적용되는 색상 특징 정보의 경우 색상, 채도, 명도의 각각에 대한 평균, 표준편차, 왜도를 사용하며 부분영역을 특징정보로 적용하는 경우 대표색상만을 사용한다. 아울러 모양특징정보의 경우 추출된 부분영역들에 대한 불변 모멘트가 주요하게 사용된다. 이로 인한 처리시간의 문제, 정확성의 문제가 제기되어 왔다. 그러나 본 논문에서 제시하는 방법에서는 추출된 색상 특징정보들을 클래스별로 구분하여 인덱싱 하고 검색 시 비교대상 이미지를 해당 컷에 한정하여 적용하므로서 검색속도를 향상시키도록 하였다.

심층 학습을 통한 암세포 광학영상 식별기법 (Identification of Multiple Cancer Cell Lines from Microscopic Images via Deep Learning)

  • 박진형;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.374-376
    • /
    • 2021
  • 임상에서 암 관련 질병의 확진을 위해 영상장비를 이용한 기초 진단 이후 추가적인 방법으로 생체검사 등을 이용한 병리적 검사가 필수적이다. 이러한 생체검사를 진행하기 위해서는 전문지식을 가진 종양학자, 임상병리사 등의 도움과 최소한의 소요시간은 확진을 위해 반드시 필요하다. 최근 들어, 인공지능을 활용한 암세포의 자동분류가 가능한 시스템 구축에 관련된 연구가 활발하게 진행되고 있다. 하지만, 이전 연구들은 한정된 알고리즘을 기반으로 하여 세포의 종류와 정확도에 한계를 보인다. 본 연구에서 심층 학습의 일종인 합성곱 신경망을 통해 총 4가지의 암세포를 식별하는 방법을 제안한다. 세포 배양을 통해 얻은 광학영상을 OpenCV를 사용하여 세포의 위치 식별 및 이미지 분할과 같은 전처리 수행 후, EfficientNet을 통해 학습하였다. 모델은 EfficientNet을 기준으로 다양한 hyper parameter를 사용하고, InceptionV3을 학습하여 성능을 비교분석 하였다. 그 결과 96.8%의 높은 정확도로 세포를 분류하는 결과를 보였으며, 이러한 분석방법은 암의 확진에 도움이 될 것으로 기대한다.

  • PDF

Porosity and pore size distribution in high-viscosity and conventional glass ionomer cements: a micro-computed tomography study

  • Aline Borburema Neves ;Laisa Inara Gracindo Lopes;Tamiris Gomes Bergstrom;Aline Saddock Sa da Silva ;Ricardo Tadeu Lopes ;Aline de Almeida Neves
    • Restorative Dentistry and Endodontics
    • /
    • 제46권4호
    • /
    • pp.57.1-57.9
    • /
    • 2021
  • Objectives: This study aimed to compare and evaluate the porosity and pore size distribution of high-viscosity glass ionomer cements (HVGICs) and conventional glass ionomer cements (GICs) using micro-computed tomography (micro-CT). Materials and Methods: Forty cylindrical specimens (n = 10) were produced in standardized molds using HVGICs and conventional GICs (Ketac Molar Easymix, Vitro Molar, MaxxionR, and Riva Self-Cure). The specimens were prepared according to ISO 9917-1 standards, scanned in a high-energy micro-CT device, and reconstructed using specific parameters. After reconstruction, segmentation procedures, and image analysis, total porosity and pore size distribution were obtained for specimens in each group. After checking the normality of the data distribution, the Kruskal-Wallis test followed by the Student-Newman-Keuls test was used to detect differences in porosity among the experimental groups with a 5% significance level. Results: Ketac Molar Easymix showed statistically significantly lower total porosity (0.15%) than MaxxionR (0.62%), Riva (0.42%), and Vitro Molar (0.57%). The pore size in all experimental cements was within the small-size range (< 0.01 mm3), but Vitro Molar showed statistically significantly more pores/defects with a larger size (> 0.01 mm3). Conclusions: Major differences in porosity and pore size were identified among the evaluated GICs. Among these, the Ketac Molar Easymix HVGIC showed the lowest porosity and void size.

IKONOS 컬러 입체영상을 이용한 대규모 도심지역의 3차원 건물복원 (3-D Building Reconstruction from Standard IKONOS Stereo Products in Dense Urban Areas)

  • 이석군;박정환
    • 대한토목학회논문집
    • /
    • 제26권3D호
    • /
    • pp.535-540
    • /
    • 2006
  • 본 논문에서는 고해상도 컬러 입체영상을 활용하여 도심지역의 3차원 건물정보를 효율적으로 복원하기 위한 일련의 처리방법을 제안하고자 한다. 본 연구에서 제안된 방법은 BDT 기법을 활용한 건물 추출, Hausdorff 거리와 컬러인덱싱 기법을 활용한 영상정합, 마지막으로 사진측량기법을 활용한 건물복원 등의 3단계의 처리과정을 포함하고 있다. 제안된 알고리즘의 실험은 고해상도 위성영상의 대표격인 IKONOS 컬러 입체영상을 대상으로 수행되었으며, 실험을 통해 건물추출에 있어서 영상의 배경부분과 건물부분의 밝기값의 분산을 증가시키는 BDT 기법이 건물추출에 우수함을 확인할 수 있었다. 또한, 2가지 건물인식기법을 활용한 영상정합 과정에 있어서도 컬러정보와 경계정보를 모두 사용할 경우 대부분의 추출건물들을 자동인식하고 이를 초기위치로 원활한 영상정합이 수행될 수 있음을 확인하였다. 최종적으로 실험지역에 대한 3차원 건물정보는 전방 다항식비례모형을 통해 획득되었으며 기준자료와의 비교를 통해 정확도 분석을 수행하였다.

ROS 기반 지능형 무인 배송 로봇 시스템의 구현 (Implementation of ROS-Based Intelligent Unmanned Delivery Robot System)

  • 공성진;이원창
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.610-616
    • /
    • 2023
  • 본 논문에서는 Robot Operating System(ROS) 기반의 모바일 매니퓰레이터(Manipulator)를 이용한 무인 배송 로봇 시스템을 구현하고 시스템 구현을 위해 사용된 기술에 대해 소개한다. 로봇은 엘리베이터를 이용해 건물 내부에서 자율주행이 가능한 모바일 로봇과 진공 펌프를 부착한 Selective Compliance Assembly Robot Arm(SCARA)-Type의 매니퓰레이터로 구성된다. 로봇은 매니퓰레이터에 부착된 카메라를 이용하여 이미지 분할과 모서리 검출을 통해 배송물을 들어올리기 위한 위치와 자세를 결정할 수 있다. 제안된 시스템은 스마트폰 앱 및 ROS와 연동된 웹서버를 통해 배송 현황을 조회하고 로봇의 실시간 위치를 파악할 수 있도록 사용자 인터페이스를 가지고 있으며, You Only Look Once(YOLO)와 Optical Character Recognition(OCR)을 통해 배송 스테이션에서 배송물과 주소지를 인식한다. 아울러 4층 건물 내부에서 진행한 배송 실험을 통해 시스템의 유효성을 검증하였다.

Vision Transformer를 이용한 UAV 영상의 벼 도복 영역 진단 (Diagnosis of the Rice Lodging for the UAV Image using Vision Transformer)

  • 명현정;김서정;최강인;김동훈;이광형;안형근;정성환;김병준
    • 스마트미디어저널
    • /
    • 제12권9호
    • /
    • pp.28-37
    • /
    • 2023
  • 쌀 수확량 감소에 크게 영향을 주는 것은 집중호우나 태풍에 의한 도복 피해이다. 도복 피해 면적 산정 방법은 직접 피해 지역을 방문하는 현장 조사를 기반으로 육안 검사 및 판단하여 객관적인 결과 획득이 어렵고 많은 시간과 비용이 요구된다. 본 논문에서는 무인 항공기로 촬영된 RGB 영상을 Vision Transformer 기반 Segformer을 활용한 벼 도복 영역 추정 및 진단을 제안한다. 제안된 방법은 도복, 정상, 그리고 배경 영역을 추정하고 종자관리요강 내 벼 포장 검사를 통해 도복률을 진단한다. 진단된 결과를 통해 벼 도복 피해 분포를 관찰할 수 있게 하며, 정부 보급종 포장 검사에 활용할 수 있다. 본 연구의 벼 도복 영역 추정 성능은 평균 정확도 98.33%와 mIoU 96.79%의 성능을 나타내었다.

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • 제66권1호
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

A review of ground camera-based computer vision techniques for flood management

  • Sanghoon Jun;Hyewoon Jang;Seungjun Kim;Jong-Sub Lee;Donghwi Jung
    • Computers and Concrete
    • /
    • 제33권4호
    • /
    • pp.425-443
    • /
    • 2024
  • Floods are among the most common natural hazards in urban areas. To mitigate the problems caused by flooding, unstructured data such as images and videos collected from closed circuit televisions (CCTVs) or unmanned aerial vehicles (UAVs) have been examined for flood management (FM). Many computer vision (CV) techniques have been widely adopted to analyze imagery data. Although some papers have reviewed recent CV approaches that utilize UAV images or remote sensing data, less effort has been devoted to studies that have focused on CCTV data. In addition, few studies have distinguished between the main research objectives of CV techniques (e.g., flood depth and flooded area) for a comprehensive understanding of the current status and trends of CV applications for each FM research topic. Thus, this paper provides a comprehensive review of the literature that proposes CV techniques for aspects of FM using ground camera (e.g., CCTV) data. Research topics are classified into four categories: flood depth, flood detection, flooded area, and surface water velocity. These application areas are subdivided into three types: urban, river and stream, and experimental. The adopted CV techniques are summarized for each research topic and application area. The primary goal of this review is to provide guidance for researchers who plan to design a CV model for specific purposes such as flood-depth estimation. Researchers should be able to draw on this review to construct an appropriate CV model for any FM purpose.

GOCI와 Landsat OLI 영상 융합을 통한 적조 탐지 (Red Tide Detection through Image Fusion of GOCI and Landsat OLI)

  • 신지선;김근용;민지은;유주형
    • 대한원격탐사학회지
    • /
    • 제34권2_2호
    • /
    • pp.377-391
    • /
    • 2018
  • 광역범위에 대한 적조의 효율적인 모니터링을 위하여 원격탐사의 필요성이 점차 증가하고 있다. 하지만 기존 연구에서는 다양한 센서 중 해색 센서만을 위한 적조 탐지 알고리즘 개발에만 집중되어 있는 실정이다. 본 연구에서는 위성 기반 적조 모니터링의 한계로 지적되고 있는 탁도가 높은 연안역의 적조 탐지와 원격탐사 자료의 부정확성을 개선하고자 다중센서의 활용을 제시하고자 한다. 국립수산과학원 적조속보 정보를 바탕으로 적조 발생해역을 선정하였고, 해색 센서인 GOCI 영상과 육상 센서인 Landsat OLI 영상을 이용하여 공간적인 융합과 분광기반 융합을 시도하였다. 두 영상의 공간 융합을 통하여, GOCI 영상에서 관측 불가능하였던 연안지역의 적조와 Landsat OLI 영상의 품질이 낮았던 외해역의 적조 모두 개선된 탐지결과 획득 가능하였다. Feature-level과 rawdata-level로 나누어 진행된 분광 융합 결과, 두 방법에서 도출된 적조 분포 양상은 큰 차이를 보이지 않았다. 하지만 feature-level 방법에서는 영상의 공간해상도가 낮을수록 적조 면적이 과대추정되는 경향이 나타났다. Linear spectral unmixing 방법으로 픽셀을 세분화한 결과, 적조 비율이 낮은 픽셀의 수가 많을수록 적조 면적의 차이는 심화되는 것으로 나타났다. Rawdata-level의 경우Gram-Schmidt가 PC spectral sharpening 기법보다 다소 넓은 면적이 추정되었지만, 큰 차이는 나타나지 않았다. 본 연구에서는 해색 센서와 육상 센서의 공간 융합을 통해 외해뿐만 아니라 탁도가 높은 연안의 적조 역시 탐지가 가능함을 보여주었고, 다양한 분광 융합 방법을 제시함으로써 더욱 정확한 적조 면적 추정 방법을 제시하였다. 이 결과는 한반도 주변의 적조를 더욱 정확하게 탐지하고, 적조를 효과적으로 제어하기 위한 대응대책 수립을 결정하는데 필요한 정확한 적조 면적 정보를 제공할 수 있을 것으로 기대된다.

하이브리드 비디오 코팅에 의한 디지털 홀로그램 압축기술 (Digital Hologram Compression Technique By Hybrid Video Coding)

  • 서영호;최현준;강훈종;이승현;김동욱
    • 대한전자공학회논문지SP
    • /
    • 제42권5호
    • /
    • pp.29-40
    • /
    • 2005
  • 디지털 홀로그램의 저변이 확대됨에 따라서 3차원 영상의 구성을 위한 스테레오 영상의 압축기술에 대한 국제적인 표준이 3DAV라는 형태로 진행되는 것과 같이 디지털 홀로그램의 압축 기술에 대한 논의도 활발히 이루어질 것으로 보인다. 3DAV의 경우애도 볼 수 있듯이 기존에 존재하는 여러 가지 기술들을 접목하거나 변형한 형태, 혹은 그들의 혼합된 형태로 논의될 가능성이 크다. 또한 디지털 홀로그램의 압축을 위한 전용 시스템을 구성하는 기존의 기술을 배제하고 개발하는 것은 현실적으로 어렵다. 따라서 다양한 영상압축 기술들과 디지털 홀로그램과의 상관관계에 대한 방향을 제시하고자 한다. 본 논문에서는 기존의 비디오 및 영상압축 도구들을 이용하여 디지털 홀로그램을 효율적으로 부호화하는 기술을 제안하고자 한다. Fringe 패턴의 형태로 표현되는 디지털 홀로그램의 생성 원리를 이용하여 비디오 데이터로 가공한 후에 부호화하는 방식을 이용한다. 여기에는 생성된 디지털 홀로그램을 부호화하기 위해 적절한 형태로 변형하는 전처리 과정, 객체 영상의 모든 정보를 포함하는 공간적인 분할, 디지털 홀로그램의 생성원리와 부합되는 주파수 변환기술, 비디오 데이터로 구성하기 위한 스캔방법, 부호화를 위한 주파수 계수의 분류, 그리고 하이브리드 형태의 압축기술 등이 고려되어 하나의 알고리즘을 구성한다. 압축을 위한 부호화 도구에는 정지영상 압축을 위한 JPEG2000을 비롯하여 동영상 압축을 위한 MPEG-2, MPEG-4, 및 H.264와 같은 국제 표준 압축 알고리즘들과 여러 무손실 압축 기술들이 포함된다. 실험 결과를 살펴보면 제안한 알고리즘은 기존의 기술에 비해서 4배에서 8배 이상의 높은 압축율에서 더 좋은 복원 성능을 보였다. 따라서 제안한 기술은 디지털 홀로그램의 부호화를 위한 좋은 연구 사례가 될 것으로 사료된다. 체중 부하에 의해서 생역학적인 변화를 일으키지 않고 얼마나 유지 할 수 있는지는 보다 장기적인 추시 관찰이 필요할 것으로 사료된다.이 생식소의 에너지 요구에 반응하여 변하는 것으로 추정된다.60일 후 $625{\pm}19.76{\mu}m$로 성장하였고, 생존율은 23%로 가장 높게 나타나 치패사육시 가장 적정한 수온은 $15^{\circ}C$라 판단되었다.다. 시도는 긍정적으로 평가되어야 한다. 그러므로 앞으로는 제품디자인 뿐만이 아닌 다른 다양한 분야들에게로 그 범위가 확대되어 디자인 문화적 정체성을 확립하는 연구가 뒤따라야 할 것이다.. 즉, 제품디자인의 결정요인 분석결과는 QFD의 접근방법에, 제품 디자인 파급효과 분석결과는 컨조인트 분석에 각각 보완적 기여를 할 수 있다. 이와 동시에, 실증적 분석결과는 Ettlie(1997)의 디자인 통합(DI) 이론에 대한 실증적 기반을 제공할 수 있다. 마지막으로, 성공적인 디자인 경영(DM)을 위해서는 최고 경영자의 지원뿐만 아니라 부처 간 의사소통의 장애요인을 제거하고 CFT(cross-functional team)를 운영함으로써 동시적 엔지니어링(CE) 및 제품 및 공정 디자인의 개발이 제품 개발의 속도를 가속화하고 디자인 품질을 높이며 시장 성공을 보증할 수 있도록 해야 한다.임과 채팅은 긍정적인 상호관련을 가진 것으로 나타난 반면 전자메일 서비스 이용은 성적 만족과 부정적인 상호관련을 가진 것으로 분석되었다. 이는 대학생들이 지루하게 느끼거나 외로움을 느낄 때 전자메일을 주로 이용하지만 성적 만족을 위해 전자메일을 이용하지 않고 있다는 사실을 보여주는 것이다. (3) 인터넷 이용 이후 다른 미디어와 면대면 커뮤니케이션과의 관계 인터넷을 이용한 후 응답자들의 전통적인 미디어(텔레비전, 라디오, 신문, 잡지, 편지,