• Title/Summary/Keyword: Image Quality Measure

Search Result 329, Processing Time 0.024 seconds

Color image quantization considering distortion measure of local region block on RGB space (RGB 공간상의 국부 영역 블록의 왜곡척도를 고려한 칼라 영상 양자화)

  • 박양우;이응주;김경만;엄태억;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.848-854
    • /
    • 1996
  • Many image display devices allow only a limited number of colors to be simultaneously displayed. in disphaying of natural color image using color palette, it is necessary to construct an optimal color palette and the optimal mapping of each pixed of the original image to a color from the palette. In this paper, we proposed the clustering algorithm using local region block centered one color cluster in the prequantized 3-D histogram. Cluster pairs which have the least distortion error are merged by considering distortion measure. The clustering process is continued until to obtain the desired number of colors. The same as the clustering process, original color value. The proposed algorithm incroporated with a spatial activity weighting value which is reflected sensitivity of HVS quantization errors in smoothing region. This method produces high quality display images and considerably reduces computation time.

  • PDF

Comparison of GAN Deep Learning Methods for Underwater Optical Image Enhancement

  • Kim, Hong-Gi;Seo, Jung-Min;Kim, Soo Mee
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.32-40
    • /
    • 2022
  • Underwater optical images face various limitations that degrade the image quality compared with optical images taken in our atmosphere. Attenuation according to the wavelength of light and reflection by very small floating objects cause low contrast, blurry clarity, and color degradation in underwater images. We constructed an image data of the Korean sea and enhanced it by learning the characteristics of underwater images using the deep learning techniques of CycleGAN (cycle-consistent adversarial network), UGAN (underwater GAN), FUnIE-GAN (fast underwater image enhancement GAN). In addition, the underwater optical image was enhanced using the image processing technique of Image Fusion. For a quantitative performance comparison, UIQM (underwater image quality measure), which evaluates the performance of the enhancement in terms of colorfulness, sharpness, and contrast, and UCIQE (underwater color image quality evaluation), which evaluates the performance in terms of chroma, luminance, and saturation were calculated. For 100 underwater images taken in Korean seas, the average UIQMs of CycleGAN, UGAN, and FUnIE-GAN were 3.91, 3.42, and 2.66, respectively, and the average UCIQEs were measured to be 29.9, 26.77, and 22.88, respectively. The average UIQM and UCIQE of Image Fusion were 3.63 and 23.59, respectively. CycleGAN and UGAN qualitatively and quantitatively improved the image quality in various underwater environments, and FUnIE-GAN had performance differences depending on the underwater environment. Image Fusion showed good performance in terms of color correction and sharpness enhancement. It is expected that this method can be used for monitoring underwater works and the autonomous operation of unmanned vehicles by improving the visibility of underwater situations more accurately.

Spatial Frequency Coverage and Image Reconstruction for Photonic Integrated Interferometric Imaging System

  • Zhang, Wang;Ma, Hongliu;Huang, Kang
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.606-616
    • /
    • 2021
  • A photonic integrated interferometric imaging system possesses the characteristics of small-scale, low weight, low power consumption, and better image quality. It has potential application for replacing conventional large space telescopes. In this paper, the principle of photonic integrated interferometric imaging is investigated. A novel lenslet array arrangement and lenslet pairing approach are proposed, which are helpful in improving spatial frequency coverage. For the novel lenslet array arrangement, two short interference arms were evenly distributed between two adjacent long interference arms. Each lenslet in the array would be paired twice through the novel lenslet pairing approach. Moreover, the image reconstruction model for optical interferometric imaging based on compressed sensing was established. Image simulation results show that the peak signal to noise ratio (PSNR) of the reconstructed image based on compressive sensing is about 10 dB higher than that of the direct restored image. Meanwhile, the normalized mean square error (NMSE) of the direct restored image is approximately 0.38 higher than that of the reconstructed image. Structural similarity index measure (SSIM) of the reconstructed image based on compressed sensing is about 0.33 higher than that of the direct restored image. The increased spatial frequency coverage and image reconstruction approach jointly contribute to better image quality of the photonic integrated interferometric imaging system.

A study on the Automatic Detection of the Welding Dimension Defect of Steel Construct using Digital Image Processing (디지털 화상처리에 의한 강.구조물의 용접부 치수 결함 검출의 자동화에 관한 연구)

  • Kim, Jae-Yeol;You, Sin;Park, Ki-Hyung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.92-99
    • /
    • 1999
  • The inspection unit which is developed and used in this study, is processed the shape data from the CCD camera to seek welding bite section shape, and then calculated as a real dimension from measuring the value of each inspection item. The reason of measuring with the real in this study is came out from the image method which used for a long time, which is extricated the characteristic as the dimension of pixel by recognize pixel. The measurement method of the section shape is that we decide the thresholding value after we drew the histogram to binarizate the object. After that, we make flat the object to get rid of the noise and measure the shape of welded part through the boundarization of the object. The shape measurement is that measure the value of the welding part to adapt the actual operation program from using the ratio between the actual dimension of the standard specimen and the dimension of image, to measure the ratio between the actual product and the camera image. The inspection algorithm which estimates the quality of welded product is developed and also, the software GUI(Graphic User Interface) which processes the automatic test function of the inspection system is developed. We make the foundation of the inspection automatic system and we will help to apply other welding machine.

  • PDF

3D Shape Recovery Using Image Focus through Nonlinear Total Variation (비선형 전변동을 이용한 초점거리 변화 기반의 3 차원 깊이 측정 방법)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • Shape From Focus (SFF) is a passive optical technique to recover 3D structure of an object that utilizes focus information from 2D images of the object taken at different focus levels. Mostly, SFF methods use a single focus measure to compute image focus quality of each pixel in the image sequence. However, it is difficult to recover accurate 3D shape using a single focus measure, as different focus measures perform differently in diverse conditions. In this paper, a nonlinear Total Variation (TV) based approach is proposed for 3D shape recovery. To improve the result of surface reconstruction, several initial depth maps are obtained using different focus measures and the resultant 3D shape is obtained by diffusing them through TV. The proposed method is tested and evaluated by using image sequences of synthetic and real objects. The results and comparative analysis demonstrate the effectiveness of our method.

A Study on Perceived Contrast Measure and Image Quality Improvement Method Based on Human Vision Models (시각 모델을 고려한 인지 대비 측정 및 영상품질 향상 방법에 관한 연구)

  • Choi, Jong Soo;Cho, Heejin
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.3
    • /
    • pp.527-540
    • /
    • 2016
  • Purpose: The purpose of this study was to propose contrast metric which is based on the human visual perception and thus it can be used to improve the quality of digital images in many applications. Methods: Previous literatures are surveyed, and then the proposed method is modeled based on Human Visual System(HVS) such as multiscale property of the contrast sensitivity function (CSF), contrast constancy property (suprathreshold), color channel property. Furthermore, experiments using digital images are shown to prove the effectiveness of the method. Results: The results of this study are as follows; regarding the proposed contrast measure of complex images, it was found by experiments that HVS follows relatively well compared to the previous contrast measurement. Conclusion: This study shows the effectiveness on how to measure the contrast of complex images which follows human perception better than other methods.

Automatic National Image Interpretability Rating Scales (NIIRS) Measurement Algorithm for Satellite Images (위성영상을 위한 NIIRS(Natinal Image Interpretability Rating Scales) 자동 측정 알고리즘)

  • Kim, Jeahee;Lee, Changu;Park, Jong Won
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.725-735
    • /
    • 2016
  • High-resolution satellite images are used in the fields of mapping, natural disaster forecasting, agriculture, ocean-based industries, infrastructure, and environment, and there is a progressive increase in the development and demand for the applications of high-resolution satellite images. Users of the satellite images desire accurate quality of the provided satellite images. Moreover, the distinguishability of each image captured by an actual satellite varies according to the atmospheric environment and solar angle at the captured region, the satellite velocity and capture angle, and the system noise. Hence , NIIRS must be measured for all captured images. There is a significant deficiency in professional human resources and time resources available to measure the NIIRS of few hundred images that are transmitted daily. Currently, NIIRS is measured every few months or even few years to assess the aging of the satellite as well as to verify and calibrate it [3]. Therefore, we develop an algorithm that can measure the national image interpretability rating scales (NIIRS) of a typical satellite image rather than an artificial target satellite image, in order to automatically assess its quality. In this study, the criteria for automatic edge region extraction are derived based on the previous works on manual edge region extraction [4][5], and consequently, we propose an algorithm that can extract the edge region. Moreover, RER and H are calculated from the extracted edge region for automatic edge region extraction. The average NIIRS value was measured to be 3.6342±0.15321 (2 standard deviations) from the automatic measurement experiment on a typical satellite image, which is similar to the result extracted from the artificial target.

Deep Learning-Based Low-Light Imaging Considering Image Signal Processing

  • Minsu, Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.19-25
    • /
    • 2023
  • In this paper, we propose a method for improving raw images captured in a low light condition based on deep learning considering the image signal processing. In the case of a smart phone camera, compared to a DSLR camera, the size of a lens or sensor is limited, so the noise increases and the reduces the quality of images in low light conditions. Existing deep learning-based low-light image processing methods create unnatural images in some cases since they do not consider the lens shading effect and white balance, which are major factors in the image signal processing. In this paper, pixel distances from the image center and channel average values are used to consider the lens shading effect and white balance with a deep learning model. Experiments with low-light images taken with a smart phone demonstrate that the proposed method achieves a higher peak signal to noise ratio and structural similarity index measure than the existing method by creating high-quality low-light images.

Correlation analysis between radiation exposure and the image quality of cone-beam computed tomography in the dental clinical environment

  • Song, Chang-Ho;Yeom, Han-Gyeol;Kim, Jo-Eun;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.283-288
    • /
    • 2022
  • Purpose: This study was conducted to measure the radiation exposure and image quality of various cone-beam computed tomography (CBCT) machines under common clinical conditions and to analyze the correlation between them. Materials and Methods: Seven CBCT machines used frequently in clinical practice were selected. Because each machine has various sizes of fields of view (FOVs), 1 large FOV and 1 small FOV were selected for each machine. Radiation exposure was measured using a dose-area product (DAP) meter. The quality of the CBCT images was analyzed using 8 image quality parameters obtained using a dental volume tomography phantom. For statistical analysis, regression analysis using a generalized linear model was used. Results: Polymethyl-methacrylate (PMMA) noise and modulation transfer function (MTF) 10% showed statistically significant correlations with DAP values, presenting positive and negative correlations, respectively (P<0.05). Image quality parameters other than PMMA noise and MTF 10% did not demonstrate statistically significant correlations with DAP values. Conclusion: As radiation exposure and image quality are not proportionally related in clinically used equipment, it is necessary to evaluate and monitor radiation exposure and image quality separately.

Image Quality Assessment Model of Natural Scene Based on Normal Distribution Analysis (일반 장면의 정규분포 분석을 기반으로 한 화질 측정 모형)

  • Park, Hyung-Ju;Har, Dong-Hwan
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.373-386
    • /
    • 2013
  • In this research, we specify the image consumers' preferred image quality ranges based on objective image quality evaluation factors and follow a method which measures preference of the natural image scenes. In other words, according to No-Reference, we select dynamic range, color, and contrast as factors of image quality measurements. For collecting sample images, we choose the preferred 200 landscapes which have over 30 recommendations by image consumers on the internet photo gallery. According to the scores of three objective factors of image quality measurements, the final expected score which means the image quality preference is measured and its total score is 100 points. In the main test, the actual image sample shows dynamic range 10 stop, LAB mean value L:54.7, A:2.96, B:-15.84, and RSC contrast 376.9. Total 200 image samples' normal distribution z value represents in dynamic range 0.21, LAB mean value L:0.15, A:0.38, B:0.13, and RSC contrast 0.08. In the standard normal distribution table, we can convert the z value as a percentage; dynamic range is 8.32%, LAB mean value is L:5.96%, A:14.8%, B:5.17%, and RSC contrast is 3.19%. And then, we convert the percentage values into the scores of 100; dynamic range is 91.68, LAB mean value is 91.36, and RSC contrast is 96.81. Therefore, we can conclude that the sample image's total mean score is 94.99 based on three objective image quality factors. Throughout our proposed image quality assessment model, we can measure the preference value of natural scenes. Also, we can specify the preferred image quality representation ranges and measure the expected image quality preference.

  • PDF