• 제목/요약/키워드: Image Quality Enhancement

검색결과 395건 처리시간 0.026초

Single Image-based Enhancement Techniques for Underwater Optical Imaging

  • Kim, Do Gyun;Kim, Soo Mee
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.442-453
    • /
    • 2020
  • Underwater color images suffer from low visibility and color cast effects caused by light attenuation by water and floating particles. This study applied single image enhancement techniques to enhance the quality of underwater images and compared their performance with real underwater images taken in Korean waters. Dark channel prior (DCP), gradient transform, image fusion, and generative adversarial networks (GAN), such as cycleGAN and underwater GAN (UGAN), were considered for single image enhancement. Their performance was evaluated in terms of underwater image quality measure, underwater color image quality evaluation, gray-world assumption, and blur metric. The DCP saturated the underwater images to a specific greenish or bluish color tone and reduced the brightness of the background signal. The gradient transform method with two transmission maps were sensitive to the light source and highlighted the region exposed to light. Although image fusion enabled reasonable color correction, the object details were lost due to the last fusion step. CycleGAN corrected overall color tone relatively well but generated artifacts in the background. UGAN showed good visual quality and obtained the highest scores against all figures of merit (FOMs) by compensating for the colors and visibility compared to the other single enhancement methods.

HSV 컬러 공간에서의 레티넥스와 채도 보정을 이용한 화질 개선 기법 (Image Quality Enhancement Method using Retinex in HSV Color Space and Saturation Correction)

  • 강한솔;고윤호
    • 한국멀티미디어학회논문지
    • /
    • 제20권9호
    • /
    • pp.1481-1490
    • /
    • 2017
  • This paper presents an image quality enhancement algorithm for dark image acquired under poor lighting condition. Various retinex algorithms which are human perception-based image processing methods were proposed to solve this problem. Although MSR(Multi-Scale Retinex) among these algorithm works well under most lighting condition, it shows color degradation because their separate nonlinear processing of RGB color channels. To compensate for the loss of the color, MSRCR(Multi-Scale Retinex with Color Restoration) was proposed. However, it requires high computational load and has additional parameters that need to be adjusted according to input image. In order to overcome this problem, a new retinex algorithm based on MSR is proposed in this paper. The proposed method consists of V channel MSR, saturation correction, and separate contrast enhancement process. Experimental results show that the subjective and objective image quality of the proposed method better than those of the conventional methods.

A Versatile Medical Image Enhancement Algorithm Based on Wavelet Transform

  • Sharma, Renu;Jain, Madhu
    • Journal of Information Processing Systems
    • /
    • 제17권6호
    • /
    • pp.1170-1178
    • /
    • 2021
  • This paper proposed a versatile algorithm based on a dual-tree complex wavelet transform for intensifying the visual aspect of medical images. First, the decomposition of the input image into a high sub-band and low-sub-band image is done. Further, to improve the resolution of the resulting image, the high sub-band image is interpolated using Lanczos interpolation. Also, contrast enhancement is performed by singular value decomposition (SVD). Finally, the image reconstruction is achieved by using an inverse wavelet transform. Then, the Gaussian filter will improve the visual quality of the image. We have collected images from the hospital and the internet for quantitative and qualitative analysis. These images act as a reference image for comparing the effectiveness of the proposed algorithm with the existing state-of-the-art. We have divided the proposed algorithm into several stages: preprocessing, contrast enhancement, resolution enhancement, and visual quality enhancement. Both analyses show the proposed algorithm's effectiveness compared to existing methods.

An Adaptive Histogram Equalization Based Local Technique for Contrast Preserving Image Enhancement

  • Lee, Joonwhoan;Pant, Suresh Raj;Lee, Hee-Sin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권1호
    • /
    • pp.35-44
    • /
    • 2015
  • The main purpose of image enhancement is to improve certain characteristics of an image to improve its visual quality. This paper proposes a method for image contrast enhancement that can be applied to both medical and natural images. The proposed algorithm is designed to achieve contrast enhancement while also preserving the local image details. To achieve this, the proposed method combines local image contrast preserving dynamic range compression and contrast limited adaptive histogram equalization (CLAHE). Global gain parameters for contrast enhancement are inadequate for preserving local image details. Therefore, in the proposed method, in order to preserve local image details, local contrast enhancement at any pixel position is performed based on the corresponding local gain parameter, which is calculated according to the current pixel neighborhood edge density. Different image quality measures are used for evaluating the performance of the proposed method. Experimental results show that the proposed method provides more information about the image details, which can help facilitate further image analysis.

Image Dehazing Enhancement Algorithm Based on Mean Guided Filtering

  • Weimin Zhou
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.417-426
    • /
    • 2023
  • To improve the effect of image restoration and solve the image detail loss, an image dehazing enhancement algorithm based on mean guided filtering is proposed. The superpixel calculation method is used to pre-segment the original foggy image to obtain different sub-regions. The Ncut algorithm is used to segment the original image, and it outputs the segmented image until there is no more region merging in the image. By means of the mean-guided filtering method, the minimum value is selected as the value of the current pixel point in the local small block of the dark image, and the dark primary color image is obtained, and its transmittance is calculated to obtain the image edge detection result. According to the prior law of dark channel, a classic image dehazing enhancement model is established, and the model is combined with a median filter with low computational complexity to denoise the image in real time and maintain the jump of the mutation area to achieve image dehazing enhancement. The experimental results show that the image dehazing and enhancement effect of the proposed algorithm has obvious advantages, can retain a large amount of image detail information, and the values of information entropy, peak signal-to-noise ratio, and structural similarity are high. The research innovatively combines a variety of methods to achieve image dehazing and improve the quality effect. Through segmentation, filtering, denoising and other operations, the image quality is effectively improved, which provides an important reference for the improvement of image processing technology.

Image enhancement of digital periapical radiographs according to diagnostic tasks

  • Choi, Jin-Woo;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • 제44권1호
    • /
    • pp.31-35
    • /
    • 2014
  • Purpose: This study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Materials and Methods: Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. Results: There were significant differences between the image quality of the processed images and that of the original images (P< 0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P< 0.01). Conclusion: Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

영상 품질 향상을 위한 색 사상 기반 실시간 광역역광보정 알고리즘의 하드웨어 설계 (Hardware Design of Real-Time Wide Dynamic Range Algorithm Based on Tone Mapping Method for Image Quality Enhancement)

  • 김근준;강봉순
    • 한국정보통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.270-275
    • /
    • 2018
  • 영상의 화질을 개선하는 방법은 색 사상 방법과 레티넥스 방법으로 나누어진다. 색 사상 방법의 대표적인 예는 히스토그램을 기반으로 영상의 화질을 개선하는 방법이다. 본 논문에서는, 영상 품질 향상을 위한 색 사상 기반 실시간 광역역광보정 알고리즘의 하드웨어 설계를 제안한다. 제안하는 방법은 영상을 밝기 영역과 색 영역으로 나눈 후, 밝기 영역의 변화량을 기초하여 색 영역을 개선한다. 또한, 고품질의 영상을 원하는 흐름에 맞추어, 12bit로 확장된 신호를 사용하며, 기존의 8bit 신호와도 호환이 가능하게 설계하였다. 시뮬레이션 결과로 영상의 화질의 개선됨을 확인 하였으며, 하드웨어 설계 결과 최대 138.26MHz로 실시간 동작이 가능함을 확인하였다.

Adaptive Enhancement Method for Robot Sequence Motion Images

  • Yu Zhang;Guan Yang
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.370-376
    • /
    • 2023
  • Aiming at the problems of low image enhancement accuracy, long enhancement time and poor image quality in the traditional robot sequence motion image enhancement methods, an adaptive enhancement method for robot sequence motion image is proposed. The feature representation of the image was obtained by Karhunen-Loeve (K-L) transformation, and the nonlinear relationship between the robot joint angle and the image feature was established. The trajectory planning was carried out in the robot joint space to generate the robot sequence motion image, and an adaptive homomorphic filter was constructed to process the noise of the robot sequence motion image. According to the noise processing results, the brightness of robot sequence motion image was enhanced by using the multi-scale Retinex algorithm. The simulation results showed that the proposed method had higher accuracy and consumed shorter time for enhancement of robot sequence motion images. The simulation results showed that the image enhancement accuracy of the proposed method could reach 100%. The proposed method has important research significance and economic value in intelligent monitoring, automatic driving, and military fields.

Color Image Enhancement Based on Adaptive Nonlinear Curves of Luminance Features

  • Cho, Hosang;Kim, Geun-Jun;Jang, Kyounghoon;Lee, Sungmok;Kang, Bongsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권1호
    • /
    • pp.60-67
    • /
    • 2015
  • This paper proposes an image-dependent color image enhancement method that uses adaptive luminance enhancement and color emphasis. It effectively enhances details of low-light regions while maintaining well-balanced luminance and color information. To compare the structure similarity and naturalness, we used the tone mapped image quality index (TMQI). The proposed method maintained better structure similarity in the enhanced image than did the space-variant luminance map (SVLM) method or the adaptive and integrated neighborhood dependent approach for nonlinear enhancement (AINDANE). The proposed method required the smallest computation time among the three algorithms. The proposed method can be easily implemented using the field-programmable gate array (FPGA), with low hardware resources and with better performance in terms of similarity.

Comparison of GAN Deep Learning Methods for Underwater Optical Image Enhancement

  • Kim, Hong-Gi;Seo, Jung-Min;Kim, Soo Mee
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.32-40
    • /
    • 2022
  • Underwater optical images face various limitations that degrade the image quality compared with optical images taken in our atmosphere. Attenuation according to the wavelength of light and reflection by very small floating objects cause low contrast, blurry clarity, and color degradation in underwater images. We constructed an image data of the Korean sea and enhanced it by learning the characteristics of underwater images using the deep learning techniques of CycleGAN (cycle-consistent adversarial network), UGAN (underwater GAN), FUnIE-GAN (fast underwater image enhancement GAN). In addition, the underwater optical image was enhanced using the image processing technique of Image Fusion. For a quantitative performance comparison, UIQM (underwater image quality measure), which evaluates the performance of the enhancement in terms of colorfulness, sharpness, and contrast, and UCIQE (underwater color image quality evaluation), which evaluates the performance in terms of chroma, luminance, and saturation were calculated. For 100 underwater images taken in Korean seas, the average UIQMs of CycleGAN, UGAN, and FUnIE-GAN were 3.91, 3.42, and 2.66, respectively, and the average UCIQEs were measured to be 29.9, 26.77, and 22.88, respectively. The average UIQM and UCIQE of Image Fusion were 3.63 and 23.59, respectively. CycleGAN and UGAN qualitatively and quantitatively improved the image quality in various underwater environments, and FUnIE-GAN had performance differences depending on the underwater environment. Image Fusion showed good performance in terms of color correction and sharpness enhancement. It is expected that this method can be used for monitoring underwater works and the autonomous operation of unmanned vehicles by improving the visibility of underwater situations more accurately.