• Title/Summary/Keyword: Image Preprocessing

Search Result 707, Processing Time 0.03 seconds

Robust Eye Localization using Multi-Scale Gabor Feature Vectors (다중 해상도 가버 특징 벡터를 이용한 강인한 눈 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • Eye localization means localization of the center of the pupils, and is necessary for face recognition and related applications. Most of eye localization methods reported so far still need to be improved about robustness as well as precision for successful applications. In this paper, we propose a robust eye localization method using multi-scale Gabor feature vectors without big computational burden. The eye localization method using Gabor feature vectors is already employed in fuck as EBGM, but the method employed in EBGM is known not to be robust with respect to initial values, illumination, and pose, and may need extensive search range for achieving the required performance, which may cause big computational burden. The proposed method utilizes multi-scale approach. The proposed method first tries to localize eyes in the lower resolution face image by utilizing Gabor Jet similarity between Gabor feature vector at an estimated initial eye coordinates and the Gabor feature vectors in the eye model of the corresponding scale. Then the method localizes eyes in the next scale resolution face image in the same way but with initial eye points estimated from the eye coordinates localized in the lower resolution images. After repeating this process in the same way recursively, the proposed method funally localizes eyes in the original resolution face image. Also, the proposed method provides an effective illumination normalization to make the proposed multi-scale approach more robust to illumination, and additionally applies the illumination normalization technique in the preprocessing stage of the multi-scale approach so that the proposed method enhances the eye detection success rate. Experiment results verify that the proposed eye localization method improves the precision rate without causing big computational overhead compared to other eye localization methods reported in the previous researches and is robust to the variation of post: and illumination.

Multiresolution 4- 8 Tile Hierarchy Construction for Realtime Visualization of Planetary Scale Geological Information (행성 규모 지리 정보의 실시간 시각화를 위한 다계층 4-8 타일 구조의 구축)

  • Jin, Jong-Wook;Wohn, Kwang-Yun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.12-21
    • /
    • 2006
  • Recently, Very large and high resolution geological data from aerial or satellite imagery are available. Many researches and applications require to do realtime visualization of interest geological area or entire planet. Important operation of wide-spreaded terrain realtime visualization technique is the appropriate model resolution selection from pre-processed multi-resolution model hierarchy depend upon participant's view. For embodying such realtime rendering system with large geometric data, Preprocessing multi-resolution hierarchy from large scale geological information of interest area is required. In this research, recent Cubic multiresolution 4-8 tile hierarchy is selected for global planetary applications. Based upon the tile hierarchy, It constructs the selective terminal level tile mesh for original geological information area and starts to sample individual generated tiles for terminal level tiles. It completes the hierarchy by constructing intermediate tiles with low pass filtering in bottom-up direction. This research embodies series of efficient cubic 4-8 tile hierarchy construction mechanism with out-of-core storage. The planetary scale Mars' geographical altitude data and image data were selected for the experiment.

  • PDF

Stereo Matching For Satellite Images using The Classified Terrain Information (지형식별정보를 이용한 입체위성영상매칭)

  • Bang, Soo-Nam;Cho, Bong-Whan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.1 s.6
    • /
    • pp.93-102
    • /
    • 1996
  • For an atomatic generation of DEM(Digital Elevation Model) by computer, it is a time-consumed work to determine adquate matches from stereo images. Correlation and evenly distributed area-based method is generally used for matching operation. In this paper, we propose a new approach that computes matches efficiantly by changing the size of mask window and search area according to the given terrain information. For image segmentation, at first edge-preserving smoothing filter is used for preprocessing, and then region growing algorithm is applied for the filterd images. The segmented regions are classifed into mountain, plain and water area by using MRF(Markov Random Filed) model. Maching is composed of predicting parallex and fine matching. Predicted parallex determines the location of search area in fine matching stage. The size of search area and mask window is determined by terrain information for each pixel. The execution time of matching is reduced by lessening the size of search area in the case of plain and water. For the experiments, four images which are covered $10km{\times}10km(1024{\times}1024\;pixel)$ of Taejeon-Kumsan in each are studied. The result of this study shows that the computing time of the proposed method using terrain information for matching operation can be reduced from 25% to 35%.

  • PDF

Directional Feature Extraction of Handwritten Numerals using Local min/max Operations (Local min/max 연산을 이용한 필기체 숫자의 방향특징 추출)

  • Jung, Soon-Won;Park, Joong-Jo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, we propose a directional feature extraction method for off-line handwritten numerals by using the morphological operations. Direction features are obtained from four directional line images, each of which contains horizontal, vertical, right-diagonal and left-diagonal lines in entire numeral lines. Conventional method for extracting directional features uses Kirsch masks which generate edge-shaped double line images for each direction, whereas our method uses directional erosion operations and generate single line images for each direction. To apply these directional erosion operations to the numeral image, preprocessing steps such as thinning and dilation are required, but resultant directional lines are more similar to numeral lines themselves. Our four [$4{\times}4$] directional features of a numeral are obtained from four directional line images through a zoning method. For obtaining the higher recognition rates of the handwrittern numerals, we use the multiple feature which is comprised of our proposed feature and the conventional features of a kirsch directional feature and a concavity feature. For recognition test with given features, we use a multi-layer perceptron neural network classifier which is trained with the back propagation algorithm. Through the experiments with the CENPARMI numeral database of Concordia University, we have achieved a recognition rate of 98.35%.

  • PDF

Effective Wavefield Separation of Reflected P- and PS-Waves in Multicomponent Seismic Data by Using Rotation Transform with Stacking (다성분 탄성파탐사자료에서 회전 변환과 중합을 이용한 효과적인 P파 반사파와 PS파 반사파의 분리)

  • Jeong, Soocheol;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.6-17
    • /
    • 2013
  • Multicomponent seismic data including both P- and PS-waves have advantages in discriminating the type of pore fluid, characterizing the lithologic attributes and producing the high resolution image. However, multicomponent seismic data recorded at the vertical and horizontal component receivers contain both P- and PS-waves which have different features, simultaneously. Therefore, the wavefield separation of P- and PS-waves as a preprocessing is inevitable in order to use the multicomponent seismic data successfully. In this study, we analyzed the previous study of the wavefield separation method suggested by Jeong and Byun in 2011, where the approximated reflection angle calculated only from one refernce depth is used in rotation transform, and showed its limitation for seismic data containing various reflected events from the multi-layered structure. In order to overcome its limitation, we suggested a new effective wavefield separation method of P- and PS-waves. In new method, we calculate the reflection angles with various reference depths and apply rotation transforms to the data with those reflection angles. Then we stack all results to obtain the final separated data. To verify our new method, we applied it to the synthetic data sets from a multi-layered model, a fault model, and the Marmousi-2 model. The results showed that the proposed method separated successfully P- and PS-reflection events from the multicomponent data from mild dipping layered model as long as the dip is not too steep.

Current Status of Hyperspectral Data Processing Techniques for Monitoring Coastal Waters (연안해역 모니터링을 위한 초분광영상 처리기법 현황)

  • Kim, Sun-Hwa;Yang, Chan-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.48-63
    • /
    • 2015
  • In this study, we introduce various hyperspectral data processing techniques for the monitoring of shallow and coastal waters to enlarge the application range and to improve the accuracy of the end results in Korea. Unlike land, more accurate atmospheric correction is needed in coastal region showing relatively low reflectance in visible wavelengths. Sun-glint which occurs due to a geometry of sun-sea surface-sensor is another issue for the data processing in the ocean application of hyperspectal imagery. After the preprocessing of the hyperspectral data, a semi-analytical algorithm based on a radiative transfer model and a spectral library can be used for bathymetry mapping in coastal area, type classification and status monitoring of benthos or substrate classification. In general, semi-analytical algorithms using spectral information obtained from hyperspectral imagey shows higher accuracy than an empirical method using multispectral data. The water depth and quality are constraint factors in the ocean application of optical data. Although a radiative transfer model suggests the theoretical limit of about 25m in depth for bathymetry and bottom classification, hyperspectral data have been used practically at depths of up to 10 m in shallow and coastal waters. It means we have to focus on the maximum depth of water and water quality conditions that affect the coastal applicability of hyperspectral data, and to define the spectral library of coastal waters to classify the types of benthos and substrates.

Fat Client-Based Abstraction Model of Unstructured Data for Context-Aware Service in Edge Computing Environment (에지 컴퓨팅 환경에서의 상황인지 서비스를 위한 팻 클라이언트 기반 비정형 데이터 추상화 방법)

  • Kim, Do Hyung;Mun, Jong Hyeok;Park, Yoo Sang;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.3
    • /
    • pp.59-70
    • /
    • 2021
  • With the recent advancements in the Internet of Things, context-aware system that provides customized services become important to consider. The existing context-aware systems analyze data generated around the user and abstract the context information that expresses the state of situations. However, these datasets is mostly unstructured and have difficulty in processing with simple approaches. Therefore, providing context-aware services using the datasets should be managed in simplified method. One of examples that should be considered as the unstructured datasets is a deep learning application. Processes in deep learning applications have a strong coupling in a way of abstracting dataset from the acquisition to analysis phases, it has less flexible when the target analysis model or applications are modified in functional scalability. Therefore, an abstraction model that separates the phases and process the unstructured dataset for analysis is proposed. The proposed abstraction utilizes a description name Analysis Model Description Language(AMDL) to deploy the analysis phases by each fat client is a specifically designed instance for resource-oriented tasks in edge computing environments how to handle different analysis applications and its factors using the AMDL and Fat client profiles. The experiment shows functional scalability through examples of AMDL and Fat client profiles targeting a vehicle image recognition model for vehicle access control notification service, and conducts process-by-process monitoring for collection-preprocessing-analysis of unstructured data.

Development of Deep Learning Structure to Secure Visibility of Outdoor LED Display Board According to Weather Change (날씨 변화에 따른 실외 LED 전광판의 시인성 확보를 위한 딥러닝 구조 개발)

  • Sun-Gu Lee;Tae-Yoon Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.340-344
    • /
    • 2023
  • In this paper, we propose a study on the development of deep learning structure to secure visibility of outdoor LED display board according to weather change. The proposed technique secures the visibility of the outdoor LED display board by automatically adjusting the LED luminance according to the weather change using deep learning using an imaging device. In order to automatically adjust the LED luminance according to weather changes, a deep learning model that can classify the weather is created by learning it using a convolutional network after first going through a preprocessing process for the flattened background part image data. The applied deep learning network reduces the difference between the input value and the output value using the Residual learning function, inducing learning while taking the characteristics of the initial input value. Next, by using a controller that recognizes the weather and adjusts the luminance of the outdoor LED display board according to the weather change, the luminance is changed so that the luminance increases when the surrounding environment becomes bright, so that it can be seen clearly. In addition, when the surrounding environment becomes dark, the visibility is reduced due to scattering of light, so the brightness of the electronic display board is lowered so that it can be seen clearly. By applying the method proposed in this paper, the result of the certified measurement test of the luminance measurement according to the weather change of the LED sign board confirmed that the visibility of the outdoor LED sign board was secured according to the weather change.

Development of Deep Learning Structure for Defective Pixel Detection of Next-Generation Smart LED Display Board using Imaging Device (영상장치를 이용한 차세대 스마트 LED 전광판의 불량픽셀 검출을 위한 딥러닝 구조 개발)

  • Sun-Gu Lee;Tae-Yoon Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.345-349
    • /
    • 2023
  • In this paper, we propose a study on the development of deep learning structure for defective pixel detection of next-generation smart LED display board using imaging device. In this research, a technique utilizing imaging devices and deep learning is introduced to automatically detect defects in outdoor LED billboards. Through this approach, the effective management of LED billboards and the resolution of various errors and issues are aimed. The research process consists of three stages. Firstly, the planarized image data of the billboard is processed through calibration to completely remove the background and undergo necessary preprocessing to generate a training dataset. Secondly, the generated dataset is employed to train an object recognition network. This network is composed of a Backbone and a Head. The Backbone employs CSP-Darknet to extract feature maps, while the Head utilizes extracted feature maps as the basis for object detection. Throughout this process, the network is adjusted to align the Confidence score and Intersection over Union (IoU) error, sustaining continuous learning. In the third stage, the created model is employed to automatically detect defective pixels on actual outdoor LED billboards. The proposed method, applied in this paper, yielded results from accredited measurement experiments that achieved 100% detection of defective pixels on real LED billboards. This confirms the improved efficiency in managing and maintaining LED billboards. Such research findings are anticipated to bring about a revolutionary advancement in the management of LED billboards.

Computer vision-based remote displacement monitoring system for in-situ bridge bearings robust to large displacement induced by temperature change

  • Kim, Byunghyun;Lee, Junhwa;Sim, Sung-Han;Cho, Soojin;Park, Byung Ho
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.521-535
    • /
    • 2022
  • Efficient management of deteriorating civil infrastructure is one of the most important research topics in many developed countries. In particular, the remote displacement measurement of bridges using linear variable differential transformers, global positioning systems, laser Doppler vibrometers, and computer vision technologies has been attempted extensively. This paper proposes a remote displacement measurement system using closed-circuit televisions (CCTVs) and a computer-vision-based method for in-situ bridge bearings having relatively large displacement due to temperature change in long term. The hardware of the system is composed of a reference target for displacement measurement, a CCTV to capture target images, a gateway to transmit images via a mobile network, and a central server to store and process transmitted images. The usage of CCTV capable of night vision capture and wireless data communication enable long-term 24-hour monitoring on wide range of bridge area. The computer vision algorithm to estimate displacement from the images involves image preprocessing for enhancing the circular features of the target, circular Hough transformation for detecting circles on the target in the whole field-of-view (FOV), and homography transformation for converting the movement of the target in the images into an actual expansion displacement. The simple target design and robust circle detection algorithm help to measure displacement using target images where the targets are far apart from each other. The proposed system is installed at the Tancheon Overpass located in Seoul, and field experiments are performed to evaluate the accuracy of circle detection and displacement measurements. The circle detection accuracy is evaluated using 28,542 images captured from 71 CCTVs installed at the testbed, and only 48 images (0.168%) fail to detect the circles on the target because of subpar imaging conditions. The accuracy of displacement measurement is evaluated using images captured for 17 days from three CCTVs; the average and root-mean-square errors are 0.10 and 0.131 mm, respectively, compared with a similar displacement measurement. The long-term operation of the system, as evaluated using 8-month data, shows high accuracy and stability of the proposed system.