• Title/Summary/Keyword: Image Navigation and Registration

Search Result 21, Processing Time 0.028 seconds

The Core Essence of the INR System Technology in the Geostationary Remote Sensing Satellites (정지궤도관측위성 INR 시스템 기술의 요체)

  • Kim, Handol
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.89-93
    • /
    • 2016
  • In this paper, we provide a summary on the core essence of INR (Image Navigation and Registration) System technology which is an essential function of geostationary remote sensing satellites. Its origin and evolution history is reviewed, its core elements and governing concept for each element are described, and a generic INR architecture is suggested which can cover all seemingly conceivable INR systems of the past, the current and the future. By this, we intend to identify and illuminate the core technical contents and the key aspects in the foreseen prospect of the up-coming INR systems and the related technologies.

DEVELOPMENT AND ANALYSIS OF IMAGE REGISTRATION PROGRAM FOR THE COMMUNICATION, OCEAN, METEOROLOGICAL SATELLITE(COMS) (통신해양기상위성의 영상위치유지 성능평가 프로그램 개발 및 분석)

  • Lee, Un-Seob;Choi, Yoon-Hyuk;Park, Sang-Young;Bang, Hyo-Choong;Ju, Gwang-Hyeok;Yang, Koon-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.3
    • /
    • pp.235-248
    • /
    • 2007
  • We developed a software for simulations and analyses of the Image Navigation and Registration (INR) system, and compares the characteristics of Image Motion Compensation (IMC) algorithms for the INR system. According to the orbit errors and attitude errors, the capabilities of the image distortions are analyzed. The distortions of images can be compensated by GOES IMC algorithm and Modified IMC (MIMC) algorithm. The capabilities of each IMC algorithm are confirmed based on compensated images. The MIMC yields better results than GOES IMC although both the algorithms well compensate distorted images. The results of this research can be used as valuable asset to design of INR system for the Communication, Ocean, Meteorological Satellite (COMS).

Markerless Image-to-Patient Registration Using Stereo Vision : Comparison of Registration Accuracy by Feature Selection Method and Location of Stereo Bision System (스테레오 비전을 이용한 마커리스 정합 : 특징점 추출 방법과 스테레오 비전의 위치에 따른 정합 정확도 평가)

  • Joo, Subin;Mun, Joung-Hwan;Shin, Ki-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.118-125
    • /
    • 2016
  • This study evaluates the performance of image to patient registration algorithm by using stereo vision and CT image for facial region surgical navigation. For the process of image to patient registration, feature extraction and 3D coordinate calculation are conducted, and then 3D CT image to 3D coordinate registration is conducted. Of the five combinations that can be generated by using three facial feature extraction methods and three registration methods on stereo vision image, this study evaluates the one with the highest registration accuracy. In addition, image to patient registration accuracy was compared by changing the facial rotation angle. As a result of the experiment, it turned out that when the facial rotation angle is within 20 degrees, registration using Active Appearance Model and Pseudo Inverse Matching has the highest accuracy, and when the facial rotation angle is over 20 degrees, registration using Speeded Up Robust Features and Iterative Closest Point has the highest accuracy. These results indicate that, Active Appearance Model and Pseudo Inverse Matching methods should be used in order to reduce registration error when the facial rotation angle is within 20 degrees, and Speeded Up Robust Features and Iterative Closest Point methods should be used when the facial rotation angle is over 20 degrees.

The Method of Virtual Reality-based Surgical Navigation to Reproduce the Surgical Plan in Spinal Fusion Surgery (척추 융합술에서 수술 계획을 재현하기 위한 가상현실 기반 수술 내비게이션 방법)

  • Song, Chanho;Son, Jaebum;Jung, Euisung;Lee, Hoyul;Park, Young-Sang;Jeong, Yoosoo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2022
  • In this paper, we proposed the method of virtual reality-based surgical navigation to reproduce the pre-planned position and angle of the pedicle screw in spinal fusion surgery. The goal of the proposed method is to quantitatively save the surgical plan by applying a virtual guide coordinate system and reproduce it in the surgical process through virtual reality. In the surgical planning step, the insertion position and angle of the pedicle screw are planned and stored based on the virtual guide coordinate system. To implement the virtual reality-based surgical navigation, a vision tracking system is applied to set the patient coordinate system and paired point-based patient-to-image registration is performed. In the surgical navigation step, the surgical plan is reproduced by quantitatively visualizing the pre-planned insertion position and angle of the pedicle screw using a virtual guide coordinate system. We conducted phantom experiment to verify the error between the surgical plan and the surgical navigation, the experimental result showed that target registration error was average 1.47 ± 0.64 mm when using the proposed method. We believe that our method can be used to accurately reproduce a pre-established surgical plan in spinal fusion surgery.

Localization of Unmanned Ground Vehicle using 3D Registration of DSM and Multiview Range Images: Application in Virtual Environment (DSM과 다시점 거리영상의 3차원 등록을 이용한 무인이동차량의 위치 추정: 가상환경에서의 적용)

  • Park, Soon-Yong;Choi, Sung-In;Jang, Jae-Seok;Jung, Soon-Ki;Kim, Jun;Chae, Jeong-Sook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.700-710
    • /
    • 2009
  • A computer vision technique of estimating the location of an unmanned ground vehicle is proposed. Identifying the location of the unmaned vehicle is very important task for automatic navigation of the vehicle. Conventional positioning sensors may fail to work properly in some real situations due to internal and external interferences. Given a DSM(Digital Surface Map), location of the vehicle can be estimated by the registration of the DSM and multiview range images obtained at the vehicle. Registration of the DSM and range images yields the 3D transformation from the coordinates of the range sensor to the reference coordinates of the DSM. To estimate the vehicle position, we first register a range image to the DSM coarsely and then refine the result. For coarse registration, we employ a fast random sample matching method. After the initial position is estimated and refined, all subsequent range images are registered by applying a pair-wise registration technique between range images. To reduce the accumulation error of pair-wise registration, we periodically refine the registration between range images and the DSM. Virtual environment is established to perform several experiments using a virtual vehicle. Range images are created based on the DSM by modeling a real 3D sensor. The vehicle moves along three different path while acquiring range images. Experimental results show that registration error is about under 1.3m in average.

Identification of Underwater Objects using Sonar Image (소나영상을 이용한 수중 물체의 식별)

  • Kang, Hyunchul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.91-98
    • /
    • 2016
  • Detection and classification of underwater objects in sonar imagery are challenging problems. This paper proposes a system that detects and identifies underwater objects at the sea floor level using a sonar image and image processing techniques. The identification process of underwater objects consists of two steps; detection of candidate regions and identification of underwater objects. The candidate regions of underwater objects are extracted by image registration through the detection of common feature points between the reference background image and the current scanning image. And then, underwater objects are identified as the closest pattern within the database using eigenvectors and eigenvalues as features. The proposed system is expected to be used in efficient securement of Q route in vessel navigation.

DESIGN OF AN IMAGE MOTION COMPENSATION (IMC) ALGORITHM FOR IMAGE REGISTRATION OF THE COMMUNICATION, OCEAN, METEOROLOGICAL SATELLITE (COMS)-1 (통신해양기상위성 1호기의 영상위치유지를 위한 영상오차보상(IMC) 알고리즘 설계)

  • Jung Taek-Seo;Park Sang-Young;Lee Un-Seob;Ju Gwang-Hyeok;Yang Koon-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.1
    • /
    • pp.29-38
    • /
    • 2006
  • This paper presents an Image Motion Compensation (IMC) algorithm for the Korea's Communication, Ocean, and Meteorological Satellite (COMS)-1. An IMC algorithm is a priority component of image registration in Image Navigation and Registration (INR) system to locate and register radiometric image data. Due to various perturbations, a satellite has orbit and attitude errors with respect to a reference motion. These errors cause depointing of the imager aiming direction, and in consequence cause image distortions. To correct the depointing of the imager aiming direction, a compensation algorithm is designed by adapting different equations from those used for the GOES satellites. The capability of the algorithm is compared with that of existing algorithm applied to the GOES's INR system. The algorithm developed in this paper improves pointing accuracy by 40%, and efficiently compensates the depointings of the imager aiming direction.

A Study on Parallax Registration for User Location on the Transparent Display using the Kinect Sensor (키넥트 센서를 활용한 투명 디스플레이에서의 사용자 위치에 대한 시계 정합 연구)

  • Nam, Byeong-Wook;Lee, Kyung-Ho;Lee, Jung-Min;Wu, Yuepeng
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.599-606
    • /
    • 2015
  • International Hydrographic Organization(IHO) adopted standard S-100 as the international standard Geographic Information System(GIS) that can be generally used in the maritime sector. Accordingly, the next-generation system to support navigation information based on GIS standard technology has being developed. AR based navigation information system that supported navigation by overlapping navigation information on the CCTV image has currently being developed. In this study, we considered the application of a transparent display as a method to support efficiently this system. When a transparent display applied, the image distortion caused by using a wide-angle lens for parallax secure, and the disc s, and demonstrated the applicability of the technology by developing a prototype.

Image-guided surgery and craniofacial applications: mastering the unseen

  • Wang, James C.;Nagy, Laszlo;Demke, Joshua C.
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.43.1-43.5
    • /
    • 2015
  • Image-guided surgery potentially enhances intraoperative safety and outcomes in a variety of craniomaxillofacial procedures. We explore the efficiency of one intraoperative navigation system in a single complex craniofacial case, review the initial and recurring costs, and estimate the added cost (e.g., additional setup time, registration). We discuss the potential challenges and benefits of utilizing image-guided surgery in our specific case and its benefits in terms of educational and teaching purposes and compare this with traditional osteotomies that rely on a surgeon's thorough understanding of anatomy coupled with tactile feedback to blindly guide the osteotome during surgery. A 13-year-old presented with untreated syndromic multi-suture synostosis, brachycephaly, severe exorbitism, and midface hypoplasia. For now, initial costs are high, recurring costs are relatively low, and there are perceived benefits of imaged-guided surgery as an excellent teaching tool for visualizing difficult and often unseen anatomy through computerized software and multi-planar real-time images.

Orbit Determination of GEO-KOMPSAT-2A Geostationary Satellite (천리안위성 2A호 지구정지궤도위성 궤도결정)

  • Yongrae Kim;Sang-Cherl Lee;Jeongrae Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2024
  • The GEO-KOMPSAT-2A (GK2A) satellite, which was launched in December 2018, carries weather observation payloads and uses the image navigation and registration system to calibrate the observation images. The calibration system requires accurate orbit prediction data and depends on the accuracy of the orbit determination accuracy. In order to find a possible way to improve the current orbit determination accuracy of the GK2A flight dynamic subsystem module, orbit determination software was developed to independently evaluate the orbit determination accuracy. A comprehensive satellite dynamic model is applied for a batch-type least squares filter. When determining the orbit, thrust firing during station-keeping maneuvers and wheel-off loading maneuvers is taken into account. One month of GK2A ranging data were processed to estimate the satellite position on a daily basis. The orbit determination error was evaluated by comparing estimates during overlapping estimation intervals.