• Title/Summary/Keyword: Image Learning

Search Result 3,175, Processing Time 0.025 seconds

Flood Disaster Prediction and Prevention through Hybrid BigData Analysis (하이브리드 빅데이터 분석을 통한 홍수 재해 예측 및 예방)

  • Ki-Yeol Eom;Jai-Hyun Lee
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.99-109
    • /
    • 2023
  • Recently, not only in Korea but also around the world, we have been experiencing constant disasters such as typhoons, wildfires, and heavy rains. The property damage caused by typhoons and heavy rain in South Korea alone has exceeded 1 trillion won. These disasters have resulted in significant loss of life and property damage, and the recovery process will also take a considerable amount of time. In addition, the government's contingency funds are insufficient for the current situation. To prevent and effectively respond to these issues, it is necessary to collect and analyze accurate data in real-time. However, delays and data loss can occur depending on the environment where the sensors are located, the status of the communication network, and the receiving servers. In this paper, we propose a two-stage hybrid situation analysis and prediction algorithm that can accurately analyze even in such communication network conditions. In the first step, data on river and stream levels are collected, filtered, and refined from diverse sensors of different types and stored in a bigdata. An AI rule-based inference algorithm is applied to analyze the crisis alert levels. If the rainfall exceeds a certain threshold, but it remains below the desired level of interest, the second step of deep learning image analysis is performed to determine the final crisis alert level.

Development of Agricultural Products Screening System through X-ray Density Analysis

  • Eunhyeok Baek;Young-Tae Kwak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.105-112
    • /
    • 2023
  • In this paper, we propose a new method for displaying colored defects by measuring the relative density with the wide-area and local densities of X-ray. The relative density of one pixel represents a relative difference from the surrounding pixels, and we also suggest a colorization of X-ray images representing these pixels as normal and defective. The traditional method mainly inspects materials such as plastics and metals, which have large differences in transmittance to the object. Our proposed method can be used to detect defects such as sprouts or holes in images obtained by an inspection machine that detects X-rays. In the experiment, the products that could not be seen with the naked eye were colored with pests or sprouts in a specific color so that they could be used in the agricultural product selection system. Products that are uniformly filled with a single ingredient inside, such as potatoes, carrots, and apples, can be detected effectively. However, it does not work well with bumpy products, such as peppers and paprika. The advantage of this method is that, unlike machine learning, it doesn't require large amounts of data. The proposed method could be applied to a screening system using X-rays and used not only in agricultural product screening systems but also in manufacturing processes such as processed food and parts manufacturing, so that it can be actively used to select defective products.

Automatic Collection of Production Performance Data Based on Multi-Object Tracking Algorithms (다중 객체 추적 알고리즘을 이용한 가공품 흐름 정보 기반 생산 실적 데이터 자동 수집)

  • Lim, Hyuna;Oh, Seojeong;Son, Hyeongjun;Oh, Yosep
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Recently, digital transformation in manufacturing has been accelerating. It results in that the data collection technologies from the shop-floor is becoming important. These approaches focus primarily on obtaining specific manufacturing data using various sensors and communication technologies. In order to expand the channel of field data collection, this study proposes a method to automatically collect manufacturing data based on vision-based artificial intelligence. This is to analyze real-time image information with the object detection and tracking technologies and to obtain manufacturing data. The research team collects object motion information for each frame by applying YOLO (You Only Look Once) and DeepSORT as object detection and tracking algorithms. Thereafter, the motion information is converted into two pieces of manufacturing data (production performance and time) through post-processing. A dynamically moving factory model is created to obtain training data for deep learning. In addition, operating scenarios are proposed to reproduce the shop-floor situation in the real world. The operating scenario assumes a flow-shop consisting of six facilities. As a result of collecting manufacturing data according to the operating scenarios, the accuracy was 96.3%.

CNN Model for Prediction of Tensile Strength based on Pore Distribution Characteristics in Cement Paste (시멘트풀의 공극분포특성에 기반한 인장강도 예측 CNN 모델)

  • Sung-Wook Hong;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.339-346
    • /
    • 2023
  • The uncertainties of microstructural features affect the properties of materials. Numerous pores that are randomly distributed in materials make it difficult to predict the properties of the materials. The distribution of pores in cementitious materials has a great influence on their mechanical properties. Existing studies focus on analyzing the statistical relationship between pore distribution and material responses, and the correlation between them is not yet fully determined. In this study, the mechanical response of cementitious materials is predicted through an image-based data approach using a convolutional neural network (CNN), and the correlation between pore distribution and material response is analyzed. The dataset for machine learning consists of high-resolution micro-CT images and the properties (tensile strength) of cementitious materials. The microstructures are characterized, and the mechanical properties are evaluated through 2D direct tension simulations using the phase-field fracture model. The attributes of input images are analyzed to identify the spot with the greatest influence on the prediction of material response through CNN. The correlation between pore distribution characteristics and material response is analyzed by comparing the active regions during the CNN process and the pore distribution.

A Study on the Development of a Program for Predicting Successful Welding of Electric Vehicle Batteries Using Laser Welding (레이저 용접을 이용한 전기차 배터리 이종접합 성공 확률 예측 프로그램 개발에 관한 연구)

  • Cheol-Hwan Kim;Chan-Su Moon;Kwan-Su Lee;Jin-Su Kim;Ae-Ryeong Jo;Bo-Sung Shin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.44-49
    • /
    • 2023
  • In the global pursuit of carbon neutrality, the rapid increase in the adoption of electric vehicles (EVs) has led to a corresponding surge in the demand for batteries. To achieve high efficiency in electric vehicles, considerations of weight reduction and battery safety have become crucial factors. Copper and aluminum, both recognized as lightweight materials, can be effectively joined through laser welding. However, due to the distinct physical characteristics of these two materials, the process of joining them poses technical challenges. This study focuses on conducting simulations to identify the optimal laser parameters for welding copper and aluminum, with the aim of streamlining the welding process. Additionally, a Graphic User Interface (GUI) program has been developed using the Python language to visually present the results. Using machine learning image data, this program is anticipated to predict joint success and serve as a guide for safe and efficient laser welding. It is expected to contribute to the safety and efficiency of the electric vehicle battery assembly process.

Automatic Detection of Type II Solar Radio Burst by Using 1-D Convolution Neutral Network

  • Kyung-Suk Cho;Junyoung Kim;Rok-Soon Kim;Eunsu Park;Yuki Kubo;Kazumasa Iwai
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.213-224
    • /
    • 2023
  • Type II solar radio bursts show frequency drifts from high to low over time. They have been known as a signature of coronal shock associated with Coronal Mass Ejections (CMEs) and/or flares, which cause an abrupt change in the space environment near the Earth (space weather). Therefore, early detection of type II bursts is important for forecasting of space weather. In this study, we develop a deep-learning (DL) model for the automatic detection of type II bursts. For this purpose, we adopted a 1-D Convolution Neutral Network (CNN) as it is well-suited for processing spatiotemporal information within the applied data set. We utilized a total of 286 radio burst spectrum images obtained by Hiraiso Radio Spectrograph (HiRAS) from 1991 and 2012, along with 231 spectrum images without the bursts from 2009 to 2015, to recognizes type II bursts. The burst types were labeled manually according to their spectra features in an answer table. Subsequently, we applied the 1-D CNN technique to the spectrum images using two filter windows with different size along time axis. To develop the DL model, we randomly selected 412 spectrum images (80%) for training and validation. The train history shows that both train and validation losses drop rapidly, while train and validation accuracies increased within approximately 100 epoches. For evaluation of the model's performance, we used 105 test images (20%) and employed a contingence table. It is found that false alarm ratio (FAR) and critical success index (CSI) were 0.14 and 0.83, respectively. Furthermore, we confirmed above result by adopting five-fold cross-validation method, in which we re-sampled five groups randomly. The estimated mean FAR and CSI of the five groups were 0.05 and 0.87, respectively. For experimental purposes, we applied our proposed model to 85 HiRAS type II radio bursts listed in the NGDC catalogue from 2009 to 2016 and 184 quiet (no bursts) spectrum images before and after the type II bursts. As a result, our model successfully detected 79 events (93%) of type II events. This results demonstrates, for the first time, that the 1-D CNN algorithm is useful for detecting type II bursts.

Detection of video editing points using facial keypoints (얼굴 특징점을 활용한 영상 편집점 탐지)

  • Joshep Na;Jinho Kim;Jonghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.15-30
    • /
    • 2023
  • Recently, various services using artificial intelligence(AI) are emerging in the media field as well However, most of the video editing, which involves finding an editing point and attaching the video, is carried out in a passive manner, requiring a lot of time and human resources. Therefore, this study proposes a methodology that can detect the edit points of video according to whether person in video are spoken by using Video Swin Transformer. First, facial keypoints are detected through face alignment. To this end, the proposed structure first detects facial keypoints through face alignment. Through this process, the temporal and spatial changes of the face are reflected from the input video data. And, through the Video Swin Transformer-based model proposed in this study, the behavior of the person in the video is classified. Specifically, after combining the feature map generated through Video Swin Transformer from video data and the facial keypoints detected through Face Alignment, utterance is classified through convolution layers. In conclusion, the performance of the image editing point detection model using facial keypoints proposed in this paper improved from 87.46% to 89.17% compared to the model without facial keypoints.

Spontaneous Speech Emotion Recognition Based On Spectrogram With Convolutional Neural Network (CNN 기반 스펙트로그램을 이용한 자유발화 음성감정인식)

  • Guiyoung Son;Soonil Kwon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.284-290
    • /
    • 2024
  • Speech emotion recognition (SER) is a technique that is used to analyze the speaker's voice patterns, including vibration, intensity, and tone, to determine their emotional state. There has been an increase in interest in artificial intelligence (AI) techniques, which are now widely used in medicine, education, industry, and the military. Nevertheless, existing researchers have attained impressive results by utilizing acted-out speech from skilled actors in a controlled environment for various scenarios. In particular, there is a mismatch between acted and spontaneous speech since acted speech includes more explicit emotional expressions than spontaneous speech. For this reason, spontaneous speech-emotion recognition remains a challenging task. This paper aims to conduct emotion recognition and improve performance using spontaneous speech data. To this end, we implement deep learning-based speech emotion recognition using the VGG (Visual Geometry Group) after converting 1-dimensional audio signals into a 2-dimensional spectrogram image. The experimental evaluations are performed on the Korean spontaneous emotional speech database from AI-Hub, consisting of 7 emotions, i.e., joy, love, anger, fear, sadness, surprise, and neutral. As a result, we achieved an average accuracy of 83.5% and 73.0% for adults and young people using a time-frequency 2-dimension spectrogram, respectively. In conclusion, our findings demonstrated that the suggested framework outperformed current state-of-the-art techniques for spontaneous speech and showed a promising performance despite the difficulty in quantifying spontaneous speech emotional expression.

Detecting high-resolution usage status of individual parcel of land using object detecting deep learning technique (객체 탐지 딥러닝 기법을 활용한 필지별 조사 방안 연구)

  • Jeon, Jeong-Bae
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.19-32
    • /
    • 2024
  • This study examined the feasibility of image-based surveys by detecting objects in facilities and agricultural land using the YOLO algorithm based on drone images and comparing them with the land category by law. As a result of detecting objects through the YOLO algorithm, buildings showed a performance of detecting objects corresponding to 96.3% of the buildings provided in the existing digital map. In addition, the YOLO algorithm developed in this study detected 136 additional buildings that were not located in the digital map. Plastic greenhouses detected a total of 297 objects, but the detection rate was low for some plastic greenhouses for fruit trees. Also, agricultural land had the lowest detection rate. This result is because agricultural land has a larger area and irregular shape than buildings, so the accuracy is lower than buildings due to the inconsistency of training data. Therefore, segmentation detection, rather than box-shaped detection, is likely to be more effective for agricultural fields. Comparing the detected objects with the land category by law, it was analyzed that some buildings exist in agricultural and forest areas where it is difficult to locate buildings. It seems that it is necessary to link with administrative information to understand that these buildings are used illegally. Therefore, at the current level, it is possible to objectively determine the existence of buildings in fields where it is difficult to locate buildings.

Quality of Radiomics Research on Brain Metastasis: A Roadmap to Promote Clinical Translation

  • Chae Jung Park;Yae Won Park;Sung Soo Ahn;Dain Kim;Eui Hyun Kim;Seok-Gu Kang;Jong Hee Chang;Se Hoon Kim;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.77-88
    • /
    • 2022
  • Objective: Our study aimed to evaluate the quality of radiomics studies on brain metastases based on the radiomics quality score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist, and the Image Biomarker Standardization Initiative (IBSI) guidelines. Materials and Methods: PubMed MEDLINE, and EMBASE were searched for articles on radiomics for evaluating brain metastases, published until February 2021. Of the 572 articles, 29 relevant original research articles were included and evaluated according to the RQS, TRIPOD checklist, and IBSI guidelines. Results: External validation was performed in only three studies (10.3%). The median RQS was 3.0 (range, -6 to 12), with a low basic adherence rate of 50.0%. The adherence rate was low in comparison to the "gold standard" (10.3%), stating the potential clinical utility (10.3%), performing the cut-off analysis (3.4%), reporting calibration statistics (6.9%), and providing open science and data (3.4%). None of the studies involved test-retest or phantom studies, prospective studies, or cost-effectiveness analyses. The overall rate of adherence to the TRIPOD checklist was 60.3% and low for reporting title (3.4%), blind assessment of outcome (0%), description of the handling of missing data (0%), and presentation of the full prediction model (0%). The majority of studies lacked pre-processing steps, with bias-field correction, isovoxel resampling, skull stripping, and gray-level discretization performed in only six (20.7%), nine (31.0%), four (3.8%), and four (13.8%) studies, respectively. Conclusion: The overall scientific and reporting quality of radiomics studies on brain metastases published during the study period was insufficient. Radiomics studies should adhere to the RQS, TRIPOD, and IBSI guidelines to facilitate the translation of radiomics into the clinical field.