• Title/Summary/Keyword: Image Learning

Search Result 3,175, Processing Time 0.035 seconds

A Study on Psychological Rehabilitation to Decrease Powerlessness in the Elderly Population (노인의 무력감 완화를 위한 심리 재활에 관한 연구)

  • 김조자;임종락;박지원
    • Journal of Korean Academy of Nursing
    • /
    • v.22 no.4
    • /
    • pp.506-525
    • /
    • 1992
  • Older people, because of the psychological and physiological changes related to the aging process are more vulnerable to experiencing powerlessness than any other age group. This self destructive cycle of depression in older people related to the experience of continued and long term powerlessness can lead even to death. The purpose of this study was to measure powerlessness and resources to increase power in older people, and to measure the effectiveness of a psychological rehabilitation program for reducing powerlessness. The research methodology used was a two step process. In the first step, a survey was done of perceived powerlessness and power resources comparing four groups of elderly people ; those living at home, those in hospital, those living in nursing homes and those attending educational programs for the elderly. The total sample size was 236. In the second step, a psychological rehabilitation program was carried out, pre and post measurements were taken related to this program. The sample consisted of 29 residents in a nursing home. The results of the study are as follows : 1. Powerlessness was classified as cognitive, emotional, activity and learning. The lowest score for powerlessness was in the area of activity, that is the people in the sample felt more power concerning their activities. The highest score was in the area of cognition where they felt they had less power. 2. When the different groups of elderly were compared, it was found that the residents of the nursing home had the highest score on perceived powerlessness and the group who were living at home had the lowest score. 3. Among the general characteristics, the factors influencing the powerlessness score were age, sex, level of education, financial resources and health status. In the interaction effects among these factors, it was found that level of education and health status were factors influencing perceived powerlessness. The elderly with lower education and poorer health status had the higher scores for perceived powerlessness. 4. The power resources could be classified into the following areas : physical strength, emotional strength, positive self-image, energy, knowledge, motivation and belief system. Belief system was given the highest score among the power resources and energy, knowledge and motivation were given low scores. 5. The group participating in an educational program for the elderly had the highest score for power resources while the group made up of residents of a nursing home had the lowest score as well as the highest score for perceived powerlessness. 6. The factors influencing the power resource scores were sex, level of education, financial resources and health status. In the analysis of the interaction effect among the factors, it was found that sex, level of education and financial resources were the factors that influenced the power resource score, that is, women, those with a low level of education and those with poor financial resources reported a lower level of power resources. 7. There was a negative correlation between perceived powerlessness and power resources in the elderly in this study. Since power resources explainded 49% of the variance for powerlessness, it can be concluded that the power resources can be used to reduce powerlessness. 8. The psychological rehabilitation program was carried out with the nursing home residents over a period of five weeks. No statistically significant difference was found in the scores on powerlessness between the pre and post tests, but there was a slight decrease in the raw scores on the post test for emotional, activity and learning powerlessness. There was a statistically significant increase in the power resource scores for emotional strength, positive self-image, energy, knowledge and motivation in the post test as compared to the pre test. In conclusion, the study indicates that a psychological rehabilitation program for the elderly could be effective in increasing power resources and this in turn could lead to a decrease in perceived powerlessness.

  • PDF

Classification of Urban Green Space Using Airborne LiDAR and RGB Ortho Imagery Based on Deep Learning (항공 LiDAR 및 RGB 정사 영상을 이용한 딥러닝 기반의 도시녹지 분류)

  • SON, Bokyung;LEE, Yeonsu;IM, Jungho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.83-98
    • /
    • 2021
  • Urban green space is an important component for enhancing urban ecosystem health. Thus, identifying the spatial structure of urban green space is required to manage a healthy urban ecosystem. The Ministry of Environment has provided the level 3 land cover map(the highest (1m) spatial resolution map) with a total of 41 classes since 2010. However, specific urban green information such as street trees was identified just as grassland or even not classified them as a vegetated area in the map. Therefore, this study classified detailed urban green information(i.e., tree, shrub, and grass), not included in the existing level 3 land cover map, using two types of high-resolution(<1m) remote sensing data(i.e., airborne LiDAR and RGB ortho imagery) in Suwon, South Korea. U-Net, one of image segmentation deep learning approaches, was adopted to classify detailed urban green space. A total of three classification models(i.e., LRGB10, LRGB5, and RGB5) were proposed depending on the target number of classes and the types of input data. The average overall accuracies for test sites were 83.40% (LRGB10), 89.44%(LRGB5), and 74.76%(RGB5). Among three models, LRGB5, which uses both airborne LiDAR and RGB ortho imagery with 5 target classes(i.e., tree, shrub, grass, building, and the others), resulted in the best performance. The area ratio of total urban green space(based on trees, shrub, and grass information) for the entire Suwon was 45.61%(LRGB10), 43.47%(LRGB5), and 44.22%(RGB5). All models were able to provide additional 13.40% of urban tree information on average when compared to the existing level 3 land cover map. Moreover, these urban green classification results are expected to be utilized in various urban green studies or decision making processes, as it provides detailed information on urban green space.

Improved Method of License Plate Detection and Recognition using Synthetic Number Plate (인조 번호판을 이용한 자동차 번호인식 성능 향상 기법)

  • Chang, Il-Sik;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.453-462
    • /
    • 2021
  • A lot of license plate data is required for car number recognition. License plate data needs to be balanced from past license plates to the latest license plates. However, it is difficult to obtain data from the actual past license plate to the latest ones. In order to solve this problem, a license plate recognition study through deep learning is being conducted by creating a synthetic license plates. Since the synthetic data have differences from real data, and various data augmentation techniques are used to solve these problems. Existing data augmentation simply used methods such as brightness, rotation, affine transformation, blur, and noise. In this paper, we apply a style transformation method that transforms synthetic data into real-world data styles with data augmentation methods. In addition, real license plate data are noisy when it is captured from a distance and under the dark environment. If we simply recognize characters with input data, chances of misrecognition are high. To improve character recognition, in this paper, we applied the DeblurGANv2 method as a quality improvement method for character recognition, increasing the accuracy of license plate recognition. The method of deep learning for license plate detection and license plate number recognition used YOLO-V5. To determine the performance of the synthetic license plate data, we construct a test set by collecting our own secured license plates. License plate detection without style conversion recorded 0.614 mAP. As a result of applying the style transformation, we confirm that the license plate detection performance was improved by recording 0.679mAP. In addition, the successul detection rate without image enhancement was 0.872, and the detection rate was 0.915 after image enhancement, confirming that the performance improved.

A study for improvement of far-distance performance of a tunnel accident detection system by using an inverse perspective transformation (역 원근변환 기법을 이용한 터널 영상유고시스템의 원거리 감지 성능 향상에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.247-262
    • /
    • 2022
  • In domestic tunnels, it is mandatory to install CCTVs in tunnels longer than 200 m which are also recommended by installation of a CCTV-based automatic accident detection system. In general, the CCTVs in the tunnel are installed at a low height as well as near by the moving vehicles due to the spatial limitation of tunnel structure, so a severe perspective effect takes place in the distance of installed CCTV and moving vehicles. Because of this effect, conventional CCTV-based accident detection systems in tunnel are known in general to be very hard to achieve the performance in detection of unexpected accidents such as stop or reversely moving vehicles, person on the road and fires, especially far from 100 m. Therefore, in this study, the region of interest is set up and a new concept of inverse perspective transformation technique is introduced. Since moving vehicles in the transformed image is enlarged proportionally to the distance from CCTV, it is possible to achieve consistency in object detection and identification of actual speed of moving vehicles in distance. To show this aspect, two datasets in the same conditions are composed with the original and the transformed images of CCTV in tunnel, respectively. A comparison of variation of appearance speed and size of moving vehicles in distance are made. Then, the performances of the object detection in distance are compared with respect to the both trained deep-learning models. As a result, the model case with the transformed images are able to achieve consistent performance in object and accident detections in distance even by 200 m.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

SURVEY OF SELF-CONCEPT AND DEPRESSION-ANXIETY OF THE ELEMENTARY SCHOOL BOYS WITH LEARNING DISABILITIES (학습장애를 가진 초등학교 남학생의 자아상 개념과 우울-불안 특성 조사)

  • Kim, Bong-Soo;Seong, Deock-Kyu;Jung, Yeong;Yoo, Hee-Jung;Cho, Soo-Churl;Shin, Sung-Woong
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.12 no.1
    • /
    • pp.125-137
    • /
    • 2001
  • We investigated the self-concept, subjective depression, and state-trait anxiety of the school boys with learning disabilities(abbr. LD, n=86) and compared them with normal boys(n=52) using Piers-Harris Self-Concept Inventory, Child Depression Inventory(abbr. CDI), and State-Trait Anxiety Inventory(abbr. STAI). With regard to Piers-Harris Self-Concept Inventory total scores, there was no significant difference between two groups, but normal boys showed higher scores in intellectual and school status, physical appearance, and happiness-satisfaction subscales than patients with LD. The male patients with LD showed significantly higher ratings in CDI total scores, and CDI subscales - ineffectiveness, anhedonia, negative self-esteem than normal children. The patients with LD reported significantly higher state anxiety, but not trait anxiety. Correlation analyses revealed that self-concept decreased over time, and depression-anxiety increased across grades in the patients with LD, but not in normal children. Especially, negative mood, anhedonia, negative self-esteem subscales of CDI, and state-trait anxiety showed significant positive correlation with grades. In both groups, CDI scores were inversely correlated with Piers-Harris Self-Concept and positively with State-Trait anxiety. In conclusion, self-concept problems which were related with school achievement and self-esteem were more abundant in the patients with LD than normal children, self-image problem, depression and anxiety increased across grades. According to regression analysis, age, behavior subscale, intellectual-school status, anxiety, popularity, happiness-satisfaction, CDI-ineffectiveness, interpersonal problem, negative self-esteem, and state anxiety could explain the self-concept in the patients with LD, not in normal children. So, the self-concept of the patients with LD were found to be related to the school achievement and stress when comparing with peers. In conclusion, elementary school boys with LD showed lower self-concept, higher depression and anxiety, and these differences increased across grades. Since the patients with LD have concomitant depression and anxiety disorders, it is important that comorbidity with emotional problems should be explored and managed properly.

  • PDF

True Orthoimage Generation from LiDAR Intensity Using Deep Learning (딥러닝에 의한 라이다 반사강도로부터 엄밀정사영상 생성)

  • Shin, Young Ha;Hyung, Sung Woong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.363-373
    • /
    • 2020
  • During last decades numerous studies generating orthoimage have been carried out. Traditional methods require exterior orientation parameters of aerial images and precise 3D object modeling data and DTM (Digital Terrain Model) to detect and recover occlusion areas. Furthermore, it is challenging task to automate the complicated process. In this paper, we proposed a new concept of true orthoimage generation using DL (Deep Learning). DL is rapidly used in wide range of fields. In particular, GAN (Generative Adversarial Network) is one of the DL models for various tasks in imaging processing and computer vision. The generator tries to produce results similar to the real images, while discriminator judges fake and real images until the results are satisfied. Such mutually adversarial mechanism improves quality of the results. Experiments were performed using GAN-based Pix2Pix model by utilizing IR (Infrared) orthoimages, intensity from LiDAR data provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) through the ISPRS (International Society for Photogrammetry and Remote Sensing). Two approaches were implemented: (1) One-step training with intensity data and high resolution orthoimages, (2) Recursive training with intensity data and color-coded low resolution intensity images for progressive enhancement of the results. Two methods provided similar quality based on FID (Fréchet Inception Distance) measures. However, if quality of the input data is close to the target image, better results could be obtained by increasing epoch. This paper is an early experimental study for feasibility of DL-based true orthoimage generation and further improvement would be necessary.

Derivation of Green Coverage Ratio Based on Deep Learning Using MAV and UAV Aerial Images (유·무인 항공영상을 이용한 심층학습 기반 녹피율 산정)

  • Han, Seungyeon;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1757-1766
    • /
    • 2021
  • The green coverage ratio is the ratio of the land area to green coverage area, and it is used as a practical urban greening index. The green coverage ratio is calculated based on the land cover map, but low spatial resolution and inconsistent production cycle of land cover map make it difficult to calculate the correct green coverage area and analyze the precise green coverage. Therefore, this study proposes a new method to calculate green coverage area using aerial images and deep neural networks. Green coverage ratio can be quickly calculated using manned aerial images acquired by local governments, but precise analysis is difficult because components of image such as acquisition date, resolution, and sensors cannot be selected and modified. This limitation can be supplemented by using an unmanned aerial vehicle that can mount various sensors and acquire high-resolution images due to low-altitude flight. In this study, we proposed a method to calculate green coverage ratio from manned or unmanned aerial images, and experimentally verified the proposed method. Aerial images enable precise analysis by high resolution and relatively constant cycles, and deep learning can automatically detect green coverage area in aerial images. Local governments acquire manned aerial images for various purposes every year and we can utilize them to calculate green coverage ratio quickly. However, acquired manned aerial images may be difficult to accurately analyze because details such as acquisition date, resolution, and sensors cannot be selected. These limitations can be supplemented by using unmanned aerial vehicles that can mount various sensors and acquire high-resolution images due to low-altitude flight. Accordingly, the green coverage ratio was calculated from the two aerial images, and as a result, it could be calculated with high accuracy from all green types. However, the green coverage ratio calculated from manned aerial images had limitations in complex environments. The unmanned aerial images used to compensate for this were able to calculate a high accuracy of green coverage ratio even in complex environments, and more precise green area detection was possible through additional band images. In the future, it is expected that the rust rate can be calculated effectively by using the newly acquired unmanned aerial imagery supplementary to the existing manned aerial imagery.

Predicting Suitable Restoration Areas for Warm-Temperate Evergreen Broad-Leaved Forests of the Islands of Jeollanamdo (전라남도 섬 지역의 난온대 상록활엽수림 복원을 위한 적합지 예측)

  • Sung, Chan Yong;Kang, Hyun-Mi;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.5
    • /
    • pp.558-568
    • /
    • 2021
  • Poor supervision and tourism activities have resulted in forest degradation in islands in Korea. Since the southern coastal region of the Korean peninsula was originally dominated by warm-temperate evergreen broad-leaved forests, it is desirable to restore forests in this region to their original vegetation. In this study, we identified suitable areas to be restored as evergreen broad-leaved forests by analyzing the environmental factors of existing evergreen broad-leaved forests in the islands of Jeollanam-do. We classified forest lands in the study area into six vegetation types from Sentinel-2 satellite images using a deep learning algorithm and analyzed the tolerance ranges of existing evergreen broad-leaved forests by measuring the locational, topographic, and climatic attributes of the classified vegetation types. Results showed that evergreen broad-leaved forests were distributed more in areas with a high altitudes and steep slope, where human intervention was relatively low. The human intervention has led to a higher distribution of evergreen broad-leaved forests in areas with lower annual average temperature, which was an unexpected but understandable result because an area with higher altitude has a lower temperature. Of the environmental factors, latitude and average temperature in the coldest month (January) were relatively less contaminated by the effects of human intervention, thus enabling the identification of suitable restoration areas of the evergreen broad-leaved forests. The tolerance range analysis of evergreen broad-leaved forests showed that they mainly grew in areas south of the latitude of 34.7° and a monthly average temperature of 1.7℃ or higher in the coldest month. Therefore, we predicted the areas meeting these criteria to be suitable for restoring evergreen broad-leaved forests. The suitable areas cover 614.5 km2, which occupies 59.0% of the total forest lands on the islands of Jeollanamdo, and 73% of actual forests that exclude agricultural and other non-restorable forest lands. The findings of this study can help forest managers prepare a restoration plan and budget for island forests.

Automatic Fracture Detection in CT Scan Images of Rocks Using Modified Faster R-CNN Deep-Learning Algorithm with Rotated Bounding Box (회전 경계박스 기능의 변형 FASTER R-CNN 딥러닝 알고리즘을 이용한 암석 CT 영상 내 자동 균열 탐지)

  • Pham, Chuyen;Zhuang, Li;Yeom, Sun;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.374-384
    • /
    • 2021
  • In this study, we propose a new approach for automatic fracture detection in CT scan images of rock specimens. This approach is built on top of two-stage object detection deep learning algorithm called Faster R-CNN with a major modification of using rotated bounding box. The use of rotated bounding box plays a key role in the future work to overcome several inherent difficulties of fracture segmentation relating to the heterogeneity of uninterested background (i.e., minerals) and the variation in size and shape of fracture. Comparing to the commonly used bounding box (i.e., axis-align bounding box), rotated bounding box shows a greater adaptability to fit with the elongated shape of fracture, such that minimizing the ratio of background within the bounding box. Besides, an additional benefit of rotated bounding box is that it can provide relative information on the orientation and length of fracture without the further segmentation and measurement step. To validate the applicability of the proposed approach, we train and test our approach with a number of CT image sets of fractured granite specimens with highly heterogeneous background and other rocks such as sandstone and shale. The result demonstrates that our approach can lead to the encouraging results on fracture detection with the mean average precision (mAP) up to 0.89 and also outperform the conventional approach in terms of background-to-object ratio within the bounding box.