• Title/Summary/Keyword: Image Index

Search Result 1,360, Processing Time 0.033 seconds

Alsat-2B/Sentinel-2 Imagery Classification Using the Hybrid Pigeon Inspired Optimization Algorithm

  • Arezki, Dounia;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.690-706
    • /
    • 2021
  • Classification is a substantial operation in data mining, and each element is distributed taking into account its feature values in the corresponding class. Metaheuristics have been widely used in attempts to solve satellite image classification problems. This article proposes a hybrid approach, the flower pigeons-inspired optimization algorithm (FPIO), and the local search method of the flower pollination algorithm is integrated into the pigeon-inspired algorithm. The efficiency and power of the proposed FPIO approach are displayed with a series of images, supported by computational results that demonstrate the cogency of the proposed classification method on satellite imagery. For this work, the Davies-Bouldin Index is used as an objective function. FPIO is applied to different types of images (synthetic, Alsat-2B, and Sentinel-2). Moreover, a comparative experiment between FPIO and the genetic algorithm genetic algorithm is conducted. Experimental results showed that GA outperformed FPIO in matters of time computing. However, FPIO provided better quality results with less confusion. The overall experimental results demonstrate that the proposed approach is an efficient method for satellite imagery classification.

Relationships between Obesity, Body Image Perception, and Weight Control in Adult Women (성인 여성의 비만, 체형인식 및 체중조절의 관계)

  • Chae, Hyunju
    • Women's Health Nursing
    • /
    • v.25 no.2
    • /
    • pp.129-142
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the relationship between obesity, body image perception, and weight control for obesity management in adult women. Methods: The subjects of this study were 3,617 women aged over 19 years, who participated in the Seventh Korea National Health and Nutrition Examination Survey 2016. Data were analyzed through complex sampling design data analysis. Results: Right body image perception according to obesity was apparent between 70.6-81.7% of women and 76.5% of women with abdominal obesity perceived that they were normal. Obese women performed more weight control than non-obese women. Women with only abdominal obesity performed less weight control than non-obese women, and 47.3% of them performed weight control. Women who perceived themselves as obese performed more weight control than women who perceived themselves as non-obese (odds ratio, 2.08; confidence interval, 1.69-2.57), but body mass index was not observed to be associated with weight control. Conclusions: Education on abdominal obesity should be provided to increase awareness about abdominal obesity and its effective management, especially in women with only abdominal obesity. In addition, interventions for right body type perception should be provided for proper weight control along with prevention and management of obesity.

Investigation of the super-resolution methods for vision based structural measurement

  • Wu, Lijun;Cai, Zhouwei;Lin, Chenghao;Chen, Zhicong;Cheng, Shuying;Lin, Peijie
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.287-301
    • /
    • 2022
  • The machine-vision based structural displacement measurement methods are widely used due to its flexible deployment and non-contact measurement characteristics. The accuracy of vision measurement is directly related to the image resolution. In the field of computer vision, super-resolution reconstruction is an emerging method to improve image resolution. Particularly, the deep-learning based image super-resolution methods have shown great potential for improving image resolution and thus the machine-vision based measurement. In this article, we firstly review the latest progress of several deep learning based super-resolution models, together with the public benchmark datasets and the performance evaluation index. Secondly, we construct a binocular visual measurement platform to measure the distances of the adjacent corners on a chessboard that is universally used as a target when measuring the structure displacement via machine-vision based approaches. And then, several typical deep learning based super resolution algorithms are employed to improve the visual measurement performance. Experimental results show that super-resolution reconstruction technology can improve the accuracy of distance measurement of adjacent corners. According to the experimental results, one can find that the measurement accuracy improvement of the super resolution algorithms is not consistent with the existing quantitative performance evaluation index. Lastly, the current challenges and future trends of super resolution algorithms for visual measurement applications are pointed out.

Comparison of estimating vegetation index for outdoor free-range pig production using convolutional neural networks

  • Sang-Hyon OH;Hee-Mun Park;Jin-Hyun Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1254-1269
    • /
    • 2023
  • This study aims to predict the change in corn share according to the grazing of 20 gestational sows in a mature corn field by taking images with a camera-equipped unmanned air vehicle (UAV). Deep learning based on convolutional neural networks (CNNs) has been verified for its performance in various areas. It has also demonstrated high recognition accuracy and detection time in agricultural applications such as pest and disease diagnosis and prediction. A large amount of data is required to train CNNs effectively. Still, since UAVs capture only a limited number of images, we propose a data augmentation method that can effectively increase data. And most occupancy prediction predicts occupancy by designing a CNN-based object detector for an image and counting the number of recognized objects or calculating the number of pixels occupied by an object. These methods require complex occupancy rate calculations; the accuracy depends on whether the object features of interest are visible in the image. However, in this study, CNN is not approached as a corn object detection and classification problem but as a function approximation and regression problem so that the occupancy rate of corn objects in an image can be represented as the CNN output. The proposed method effectively estimates occupancy for a limited number of cornfield photos, shows excellent prediction accuracy, and confirms the potential and scalability of deep learning.

Underwater Optical Image Data Transmission in the Presence of Turbulence and Attenuation

  • Ramavath Prasad Naik;Maaz Salman;Wan-Young Chung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Underwater images carry information that is useful in the fields of aquaculture, underwater military security, navigation, transportation, and so on. In this research, we transmitted an underwater image through various underwater mediums in the presence of underwater turbulence and beam attenuation effects using a high-speed visible optical carrier signal. The optical beam undergoes scintillation because of the turbulence and attenuation effects; therefore, distorted images were observed at the receiver end. To understand the behavior of the communication media, we obtained the bit error rate (BER) performance of the system with respect to the average signal-to-noise ratio (SNR). Also, the structural similarity index (SSI) and peak SNR (PSNR) metrics of the received image were evaluated. Based on the received images, we employed suitable nonlinear filters to recover the distorted images and enhance them further. The BER, SSI, and PSNR metrics of the specific nonlinear filters were also evaluated and compared with the unfiltered metrics. These metrics were evaluated using the on-off keying and binary phase-shift keying modulation techniques for the 50-m and 100-m links for beam attenuation resulting from pure seawater, clear ocean water, and coastal ocean water mediums.

Lossless Coding Scheme for Lattice Vector Quantizer Using Signal Set Partitioning Method (Signal Set Partitioning을 이용한 격자 양자화의 비 손실 부호화 기법)

  • Kim, Won-Ha
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.6
    • /
    • pp.93-105
    • /
    • 2001
  • In the lossless step of Lattice Vector Quantization(LVQ), the lattice codewords produced at quantization step are enumerated into radius sequence and index sequence. The radius sequence is run-length coded and then entropy coded, and the index sequence is represented by fixed length binary bits. As bit rate increases, the index bit linearly increases and deteriorates the coding performances. To reduce the index bits across the wide range of bit rates, we developed a novel lattice enumeration algorithm adopting the set partitioning method. The proposed enumeration method shifts down large index values to smaller ones and so reduces the index bits. When the proposed lossless coding scheme is applied to a wavelet based image coding, the proposed scheme achieves more than 10% at bit rates higher than 0.3 bits/pixel over the conventional lossless coding method, and yields more improvement as bit rate becomes higher.

  • PDF

Biomass Estimation of Gwangneung Catchment Area with Landsat ETM+ Image

  • Chun, Jung Hwa;Lim, Jong-Hwan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.591-601
    • /
    • 2007
  • Spatial information on forest biomass is an important factor to evaluate the capability of forest as a carbon sequestrator and is a core independent variable required to drive models which describe ecological processes such as carbon budget, hydrological budget, and energy flow. The objective of this study is to understand the relationship between satellite image and field data, and to quantitatively estimate and map the spatial distribution of forest biomass. Landsat Enhanced Thematic Mapper (ETM+) derived vegetation indices and field survey data were applied to estimate the biomass distribution of mountainous forest located in Gwangneung Experimental Forest (230 ha). Field survey data collected from the ground plots were used as the dependent variable, forest biomass, while satellite image reflectance data (Band 1~5 and Band 7), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and RVI (Ratio Vegetation Index) were used as the independent variables. The mean and total biomass of Gwangneung catchment area were estimated to be about 229.5 ton/ha and $52.8{\times}10^3$ tons respectively. Regression analysis revealed significant relationships between the measured biomass and Landsat derived variables in both of deciduous forest ($R^2=0.76$, P < 0.05) and coniferous forest ($R^2=0.75$, P < 0.05). However, there still exist many uncertainties in the estimation of forest ecosystem parameters based on vegetation remote sensing. Developing remote sensing techniques with adequate filed survey data over a long period are expected to increase the estimation accuracy of spatial information of the forest ecosystem.

Core Point Detection Using Labeling Method in Fingerprint (레이블링 방법을 이용한 지문 영상의 기준점 검출)

  • 송영철;박철현;박길흠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9C
    • /
    • pp.860-867
    • /
    • 2003
  • In this paper, an efficient core point detection method using orientation pattern labeling is proposed in fingerprint image. The core point, which is one of the singular points in fingerprint image, is used as the reference point in the most fingerprint recognizing system. Therefore, the detection of the core point is the most essential step of the fingerprint recognizing system, it can affect in the whole system performance. The proposed method could detect the position of the core point by applying the labeling method for the directional pattern which is come from the distribution of the ridges in fingerprint image and applying detailed algorithms for the decision of the core point's position. The simulation result of proposed method is better than the result of Poincare index method and the sine map method in executing time and detecting rate. Especially, the Poincare index method can't detect the core point in the detection of the arch type and the sine map method takes too much times for executing. But the proposed method can overcome these problems.

Comparison of Remote Sensing and Crop Growth Models for Estimating Within-Field LAI Variability

  • Hong, Suk-Young;Sudduth, Kenneth-A.;Kitchen, Newell-R.;Fraisse, Clyde-W.;Palm, Harlan-L.;Wiebold, William-J.
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.175-188
    • /
    • 2004
  • The objectives of this study were to estimate leaf area index (LAI) as a function of image-derived vegetation indices, and to compare measured and estimated LAI to the results of crop model simulation. Soil moisture, crop phenology, and LAI data were obtained several times during the 2001 growing season at monitoring sites established in two central Missouri experimental fields, one planted to com (Zea mays L.) and the other planted to soybean (Glycine max L.). Hyper- and multi-spectral images at varying spatial. and spectral resolutions were acquired from both airborne and satellite platforms, and data were extracted to calculate standard vegetative indices (normalized difference vegetative index, NDVI; ratio vegetative index, RVI; and soil-adjusted vegetative index, SAVI). When comparing these three indices, regressions for measured LAI were of similar quality $(r^2$ =0.59 to 0.61 for com; $r^2$ =0.66 to 0.68 for soybean) in this single-year dataset. CERES(Crop Environment Resource Synthesis)-Maize and CROPGRO-Soybean models were calibrated to measured soil moisture and yield data and used to simulate LAI over the growing season. The CERES-Maize model over-predicted LAI at all corn monitoring sites. Simulated LAI from CROPGRO-Soybean was similar to observed and image-estimated LA! for most soybean monitoring sites. These results suggest crop growth model predictions might be improved by incorporating image-estimated LAI. Greater improvements might be expected with com than with soybean.

Index-based Boundary Matching Supporting Partial Denoising for Large Image Databases

  • Kim, Bum-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.91-99
    • /
    • 2019
  • In this paper, we propose partial denoising boundary matching based on an index for faster matching in very large image databases. Attempts have recently been made to convert boundary images to time-series with the objective of solving the partial denoising problem in boundary matching. In this paper, we deal with the disk I/O overhead problem of boundary matching to support partial denoising in a large image database. Although the solution to the problem superficially appears trivial as it only applies indexing techniques to boundary matching, it is not trivial since multiple indexes are required for every possible denoising parameters. Our solution is an efficient index-based approach to partial denoising using $R^*-tree$ in boundary matching. The results of experiments conducted show that our index-based matching methods improve search performance by orders of magnitude.