• Title/Summary/Keyword: Image Generative AI

Search Result 53, Processing Time 0.018 seconds

A Hybrid Oversampling Technique for Imbalanced Structured Data based on SMOTE and Adapted CycleGAN (불균형 정형 데이터를 위한 SMOTE와 변형 CycleGAN 기반 하이브리드 오버샘플링 기법)

  • Jung-Dam Noh;Byounggu Choi
    • Information Systems Review
    • /
    • v.24 no.4
    • /
    • pp.97-118
    • /
    • 2022
  • As generative adversarial network (GAN) based oversampling techniques have achieved impressive results in class imbalance of unstructured dataset such as image, many studies have begun to apply it to solving the problem of imbalance in structured dataset. However, these studies have failed to reflect the characteristics of structured data due to changing the data structure into an unstructured data format. In order to overcome the limitation, this study adapted CycleGAN to reflect the characteristics of structured data, and proposed hybridization of synthetic minority oversampling technique (SMOTE) and the adapted CycleGAN. In particular, this study tried to overcome the limitations of existing studies by using a one-dimensional convolutional neural network unlike previous studies that used two-dimensional convolutional neural network. Oversampling based on the method proposed have been experimented using various datasets and compared the performance of the method with existing oversampling methods such as SMOTE and adaptive synthetic sampling (ADASYN). The results indicated the proposed hybrid oversampling method showed superior performance compared to the existing methods when data have more dimensions or higher degree of imbalance. This study implied that the classification performance of oversampling structured data can be improved using the proposed hybrid oversampling method that considers the characteristic of structured data.

A Study on GAN Algorithm for Restoration of Cultural Property (pagoda)

  • Yoon, Jin-Hyun;Lee, Byong-Kwon;Kim, Byung-Wan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.77-84
    • /
    • 2021
  • Today, the restoration of cultural properties is done by applying the latest IT technology from relying on existing data and experts. However, there are cases where new data are released and the original restoration is incorrect. Also, sometimes it takes too long to restore. And there is a possibility that the results will be different than expected. Therefore, we aim to quickly restore cultural properties using DeepLearning. Recently, so the algorithm DcGAN made in GANs algorithm, and image creation, restoring sectors are constantly evolving. We try to find the optimal GAN algorithm for the restoration of cultural properties among various GAN algorithms. Because the GAN algorithm is used in various fields. In the field of restoring cultural properties, it will show that it can be applied in practice by obtaining meaningful results. As a result of experimenting with the DCGAN and Style GAN algorithms among the GAN algorithms, it was confirmed that the DCGAN algorithm generates a top image with a low resolution.

Generative Adversarial Network-Based Image Conversion Among Different Computed Tomography Protocols and Vendors: Effects on Accuracy and Variability in Quantifying Regional Disease Patterns of Interstitial Lung Disease

  • Hye Jeon Hwang;Hyunjong Kim;Joon Beom Seo;Jong Chul Ye;Gyutaek Oh;Sang Min Lee;Ryoungwoo Jang;Jihye Yun;Namkug Kim;Hee Jun Park;Ho Yun Lee;Soon Ho Yoon;Kyung Eun Shin;Jae Wook Lee;Woocheol Kwon;Joo Sung Sun;Seulgi You;Myung Hee Chung;Bo Mi Gil;Jae-Kwang Lim;Youkyung Lee;Su Jin Hong;Yo Won Choi
    • Korean Journal of Radiology
    • /
    • v.24 no.8
    • /
    • pp.807-820
    • /
    • 2023
  • Objective: To assess whether computed tomography (CT) conversion across different scan parameters and manufacturers using a routable generative adversarial network (RouteGAN) can improve the accuracy and variability in quantifying interstitial lung disease (ILD) using a deep learning-based automated software. Materials and Methods: This study included patients with ILD who underwent thin-section CT. Unmatched CT images obtained using scanners from four manufacturers (vendors A-D), standard- or low-radiation doses, and sharp or medium kernels were classified into groups 1-7 according to acquisition conditions. CT images in groups 2-7 were converted into the target CT style (Group 1: vendor A, standard dose, and sharp kernel) using a RouteGAN. ILD was quantified on original and converted CT images using a deep learning-based software (Aview, Coreline Soft). The accuracy of quantification was analyzed using the dice similarity coefficient (DSC) and pixel-wise overlap accuracy metrics against manual quantification by a radiologist. Five radiologists evaluated quantification accuracy using a 10-point visual scoring system. Results: Three hundred and fifty CT slices from 150 patients (mean age: 67.6 ± 10.7 years; 56 females) were included. The overlap accuracies for quantifying total abnormalities in groups 2-7 improved after CT conversion (original vs. converted: 0.63 vs. 0.68 for DSC, 0.66 vs. 0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise precision; P < 0.002 for all). The DSCs of fibrosis score, honeycombing, and reticulation significantly increased after CT conversion (0.32 vs. 0.64, 0.19 vs. 0.47, and 0.23 vs. 0.54, P < 0.002 for all), whereas those of ground-glass opacity, consolidation, and emphysema did not change significantly or decreased slightly. The radiologists' scores were significantly higher (P < 0.001) and less variable on converted CT. Conclusion: CT conversion using a RouteGAN can improve the accuracy and variability of CT images obtained using different scan parameters and manufacturers in deep learning-based quantification of ILD.