• 제목/요약/키워드: Image Dictionary

검색결과 78건 처리시간 0.025초

No-reference Image Quality Assessment With A Gradient-induced Dictionary

  • Li, Leida;Wu, Dong;Wu, Jinjian;Qian, Jiansheng;Chen, Beijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.288-307
    • /
    • 2016
  • Image distortions are typically characterized by degradations of structures. Dictionaries learned from natural images can capture the underlying structures in images, which are important for image quality assessment (IQA). This paper presents a general-purpose no-reference image quality metric using a GRadient-Induced Dictionary (GRID). A dictionary is first constructed based on gradients of natural images using K-means clustering. Then image features are extracted using the dictionary based on Euclidean-norm coding and max-pooling. A distortion classification model and several distortion-specific quality regression models are trained using the support vector machine (SVM) by combining image features with distortion types and subjective scores, respectively. To evaluate the quality of a test image, the distortion classification model is used to determine the probabilities that the image belongs to different kinds of distortions, while the regression models are used to predict the corresponding distortion-specific quality scores. Finally, an overall quality score is computed as the probability-weighted distortion-specific quality scores. The proposed metric can evaluate image quality accurately and efficiently using a small dictionary. The performance of the proposed method is verified on public image quality databases. Experimental results demonstrate that the proposed metric can generate quality scores highly consistent with human perception, and it outperforms the state-of-the-arts.

Classification of Man-Made and Natural Object Images in Color Images

  • Park, Chang-Min;Gu, Kyung-Mo;Kim, Sung-Young;Kim, Min-Hwan
    • 한국멀티미디어학회논문지
    • /
    • 제7권12호
    • /
    • pp.1657-1664
    • /
    • 2004
  • We propose a method that classifies images into two object types man-made and natural objects. A central object is extracted from each image by using central object extraction method[1] before classification. A central object in an images defined as a set of regions that lies around center of the image and has significant color distribution against its surrounding. We define three measures to classify the object images. The first measure is energy of edge direction histogram. The energy is calculated based on the direction of only non-circular edges. The second measure is an energy difference along directions in Gabor filter dictionary. Maximum and minimum energy along directions in Gabor filter dictionary are selected and the energy difference is computed as the ratio of the maximum to the minimum value. The last one is a shape of an object, which is also represented by Gabor filter dictionary. Gabor filter dictionary for the shape of an object differs from the one for the texture in an object in which the former is computed from a binarized object image. Each measure is combined by using majority rule tin which decisions are made by the majority. A test with 600 images shows a classification accuracy of 86%.

  • PDF

Person Re-identification using Sparse Representation with a Saliency-weighted Dictionary

  • Kim, Miri;Jang, Jinbeum;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권4호
    • /
    • pp.262-268
    • /
    • 2017
  • Intelligent video surveillance systems have been developed to monitor global areas and find specific target objects using a large-scale database. However, person re-identification presents some challenges, such as pose change and occlusions. To solve the problems, this paper presents an improved person re-identification method using sparse representation and saliency-based dictionary construction. The proposed method consists of three parts: i) feature description based on salient colors and textures for dictionary elements, ii) orthogonal atom selection using cosine similarity to deal with pose and viewpoint change, and iii) measurement of reconstruction error to rank the gallery corresponding a probe object. The proposed method provides good performance, since robust descriptors used as a dictionary atom are generated by weighting some salient features, and dictionary atoms are selected by reducing excessive redundancy causing low accuracy. Therefore, the proposed method can be applied in a large scale-database surveillance system to search for a specific object.

Post-Processing for JPEG-Coded Image Deblocking via Sparse Representation and Adaptive Residual Threshold

  • Wang, Liping;Zhou, Xiao;Wang, Chengyou;Jiang, Baochen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1700-1721
    • /
    • 2017
  • The problem of blocking artifacts is very common in block-based image and video compression, especially at very low bit rates. In this paper, we propose a post-processing method for JPEG-coded image deblocking via sparse representation and adaptive residual threshold. This method includes three steps. First, we obtain the dictionary by online dictionary learning and the compressed images. The dictionary is then modified by the histogram of oriented gradient (HOG) feature descriptor and K-means cluster. Second, an adaptive residual threshold for orthogonal matching pursuit (OMP) is proposed and used for sparse coding by combining blind image blocking assessment. At last, to take advantage of human visual system (HVS), the edge regions of the obtained deblocked image can be further modified by the edge regions of the compressed image. The experimental results show that our proposed method can keep the image more texture and edge information while reducing the image blocking artifacts.

4차원 Light Field 영상에서 Dictionary Learning 기반 초해상도 알고리즘 (Dictionary Learning based Superresolution on 4D Light Field Images)

  • 이승재;박인규
    • 방송공학회논문지
    • /
    • 제20권5호
    • /
    • pp.676-686
    • /
    • 2015
  • Light field 카메라를 이용하여 영상을 취득한 후 다양한 응용 프로그램으로 확장이 가능한 4차원 light field 영상은 일반적인 2차원 공간영역(spatial domain)과 추가적인 2차원 각영역(angular domain)으로 구성된다. 그러나 이러한 4차원 light field 영상을 유한한 해상도를 가진 2차원 CMOS 센서로 취득하므로 저해상도의 제약이 존재한다. 본 논문에서는 이러한 4차원 light field 영상이 가지는 해상도 제약 조건을 해결하기 위하여, 4차원 light field 영상에 적합한 딕셔너리 학습 기반(dictionary learning-based) 초해상도(superresolution) 알고리즘을 제안한다. 제안하는 알고리즘은 4차원 light field 영상으로부터 추출한 많은 수의 4차원 패치(patch)들을 바탕으로 딕셔너리를 구성 및 훈련하며, 학습된 딕셔너리를 바탕으로 저해상도 입력 영상의 해상도를 향상시키는 과정을 수행한다. 제안하는 알고리즘은 공간영역과 각영역의 해상도를 동시에 각각 2배 향상시킨다. 실험에 사용된 영상은 상용 light field 카메라인 Lytro에서 취득하였고 기존의 알고리즘과의 비교를 통해 제안하는 알고리즘의 우수성을 검증한다.

Fast Super-Resolution Algorithm Based on Dictionary Size Reduction Using k-Means Clustering

  • Jeong, Shin-Cheol;Song, Byung-Cheol
    • ETRI Journal
    • /
    • 제32권4호
    • /
    • pp.596-602
    • /
    • 2010
  • This paper proposes a computationally efficient learning-based super-resolution algorithm using k-means clustering. Conventional learning-based super-resolution requires a huge dictionary for reliable performance, which brings about a tremendous memory cost as well as a burdensome matching computation. In order to overcome this problem, the proposed algorithm significantly reduces the size of the trained dictionary by properly clustering similar patches at the learning phase. Experimental results show that the proposed algorithm provides superior visual quality to the conventional algorithms, while needing much less computational complexity.

Hierarchical Regression for Single Image Super Resolution via Clustering and Sparse Representation

  • Qiu, Kang;Yi, Benshun;Li, Weizhong;Huang, Taiqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2539-2554
    • /
    • 2017
  • Regression-based image super resolution (SR) methods have shown great advantage in time consumption while maintaining similar or improved quality performance compared to other learning-based methods. In this paper, we propose a novel single image SR method based on hierarchical regression to further improve the quality performance. As an improvement to other regression-based methods, we introduce a hierarchical scheme into the process of learning multiple regressors. First, training samples are grouped into different clusters according to their geometry similarity, which generates the structure layer. Then in each cluster, a compact dictionary can be learned by Sparse Coding (SC) method and the training samples can be further grouped by dictionary atoms to form the detail layer. Last, a series of projection matrixes, which anchored to dictionary atoms, can be learned by linear regression. Experiment results show that hierarchical scheme can lead to regression that is more precise. Our method achieves superior high quality results compared with several state-of-the-art methods.

이미지 사전을 이용한 보완대체 의사소통 시스템의 구현 (Implementation of Augmentative and Alternative Communication System Using Image Dictionary)

  • 류제;김우성;한광록
    • 한국멀티미디어학회논문지
    • /
    • 제9권9호
    • /
    • pp.1208-1221
    • /
    • 2006
  • 본 논문에서는 언어장애인이 이미지를 사용하여 쉽게 의사를 전달할 수 있도록 하기 위하여 이미지 사전에 기반을 둔 보완대체 의사소통 도구를 구현하였다. 일반적으로 언어장애를 가지고 있는 사람들은 그들의 의사를 전달하기 위하여 몇 개의 제한된 언어를 사용한다. 또한 언어 장애인들에게는 말로서 의사를 전달하는 데에는 어려움이 있기 때문에 이미지를 사용하면 훨씬 효과적으로 의사소통을 할 수 있다. 따라서 대화자의 의사전달의 핵심을 이루는 동사와 형용사에 해당하는 단어에 대하여 이미지들을 제작하고, 이 이미지들과 결합할 수 있는 명사 이미지와의 의미관계를 패턴으로 정의하여, 이미지 사전을 구축하였다. 본 논문의 보완대체 의사소통 시스템은 사용자가 동사의 이미지를 클릭하고, 이 이미지의 의미관계를 기반으로 하는 결합 패턴의 구성요소인 명사의 이미지를 선택하여 문장을 생성한다. 구현된 시스템은 언어장애아들을 대상으로 그들이 얼마나 효율적으로 의사를 전달할 수 있는지에 대하여 평가되었으며, 약 70% 이상의 대화 성공률을 보였다.

  • PDF

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

손실 영역 분석 기반의 학습데이터 매핑 기법을 이용한 초해상도 연구 (Super Resolution using Dictionary Data Mapping Method based on Loss Area Analysis)

  • 한현호;이상훈
    • 한국융합학회논문지
    • /
    • 제11권3호
    • /
    • pp.19-26
    • /
    • 2020
  • 본 논문에서는 학습된 사전 기반 초해상도 결과를 개선하기 위해 분석한 손실 영역을 기반으로 학습 데이터를 적용하는 방법을 제안하였다. 기존의 학습된 사전 기반 방법은 입력 영상의 특징을 고려하지 않는 학습된 영상의 형태로 출력할 수 있으며, 이 과정에서 인공물이 발생할 수 있다. 제안하는 방법은 입력 영상과 학습된 영상의 일치하지 않는 특징으로 인한 인공물 발생을 줄이기 위해 1차 복원 결과를 분석함으로써 손실 정보를 추정하였다. 추정된 결과의 잡음 및 화소 불균형을 가우시안 기반의 커널로 개선하여 생성된 특징 맵에 따라 학습 데이터를 매핑하였다. 결과 비교를 위해 기존의 초해상도 방법과 제안 방법의 결과를 고화질 영상과 PSNR(Peak Signal to Noise Ratio), SSIM(Structural SIMilarity Index) 으로 비교한 결과 각각 4%와 3%의 향상된 결과를 확인하였다.