• 제목/요약/키워드: Image Diagnosis

검색결과 1,412건 처리시간 0.028초

Skin Condition Analysis of Facial Image using Smart Device: Based on Acne, Pigmentation, Flush and Blemish

  • Park, Ki-Hong;Kim, Yoon-Ho
    • 한국정보기술학회 영문논문지
    • /
    • 제8권2호
    • /
    • pp.47-58
    • /
    • 2018
  • In this paper, we propose a method for skin condition analysis using a camera module embedded in a smartphone without a separate skin diagnosis device. The type of skin disease detected in facial image taken by smartphone is acne, pigmentation, blemish and flush. Face features and regions were detected using Haar features, and skin regions were detected using YCbCr and HSV color models. Acne and flush were extracted by setting the range of a component image hue, and pigmentation was calculated by calculating the factor between the minimum and maximum value of the corresponding skin pixel in the component image R. Blemish was detected on the basis of adaptive thresholds in gray scale level images. As a result of the experiment, the proposed skin condition analysis showed that skin diseases of acne, pigmentation, blemish and flush were effectively detected.

Attentive Transfer Learning via Self-supervised Learning for Cervical Dysplasia Diagnosis

  • Chae, Jinyeong;Zimmermann, Roger;Kim, Dongho;Kim, Jihie
    • Journal of Information Processing Systems
    • /
    • 제17권3호
    • /
    • pp.453-461
    • /
    • 2021
  • Many deep learning approaches have been studied for image classification in computer vision. However, there are not enough data to generate accurate models in medical fields, and many datasets are not annotated. This study presents a new method that can use both unlabeled and labeled data. The proposed method is applied to classify cervix images into normal versus cancerous, and we demonstrate the results. First, we use a patch self-supervised learning for training the global context of the image using an unlabeled image dataset. Second, we generate a classifier model by using the transferred knowledge from self-supervised learning. We also apply attention learning to capture the local features of the image. The combined method provides better performance than state-of-the-art approaches in accuracy and sensitivity.

An Effective WSSENet-Based Similarity Retrieval Method of Large Lung CT Image Databases

  • Zhuang, Yi;Chen, Shuai;Jiang, Nan;Hu, Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2359-2376
    • /
    • 2022
  • With the exponential growth of medical image big data represented by high-resolution CT images(CTI), the high-resolution CTI data is of great importance for clinical research and diagnosis. The paper takes lung CTI as an example to study. Retrieving answer CTIs similar to the input one from the large-scale lung CTI database can effectively assist physicians to diagnose. Compared with the conventional content-based image retrieval(CBIR) methods, the CBIR for lung CTIs demands higher retrieval accuracy in both the contour shape and the internal details of the organ. In traditional supervised deep learning networks, the learning of the network relies on the labeling of CTIs which is a very time-consuming task. To address this issue, the paper proposes a Weakly Supervised Similarity Evaluation Network (WSSENet) for efficiently support similarity analysis of lung CTIs. We conducted extensive experiments to verify the effectiveness of the WSSENet based on which the CBIR is performed.

MDCT를 이용한 간과 혈관의 3D 영상분석 (3D Image Analysis of Liver and Blood Vessels using MDCT)

  • 양비;박종원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.155-156
    • /
    • 2009
  • In this paper we present 3D image analysis of liver and blood vessels using MDCT. The purpose is to enhance the performance of clinician in assessing anatomical information of liver and blood vessels. The system consists of two parts: 3D image reconstruction and analysis of the 3D liver and blood vessel image. The central vein of the liver is the most important blood vessel for the liver transplantation. We will find the central vein's location and characteristic, and will scheme out a computer assistant liver transplantation planning. It will be an effective tool for interventional radiology, surgical planning, and quantitative diagnosis.

CNN을 이용한 안저 영상의 녹내장 검출 (Glaucoma Detection of Fundus Images Using Convolution Neural Network)

  • 신수연
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.636-638
    • /
    • 2022
  • 본 논문은 의료진단 검출 분야에서 혈관, 신경조직, 망막 손상 그리고 다양한 심혈관계 질환과 치매까지 진단하는 데 유용하게 사용하고 있는 안저 영상에 CNN(Convolution Neural Network) 알고리즘을 적용하고 녹내장 병변을 검출하기 위한 연구를 진행한다. 실험을 위하여 정상 안저 영상과 녹내장 병변이 있는 안저 영상으로 구성된 데이터 세트를 AlexNet으로 분류하고 그 성능을 확인하였다.

  • PDF

NASNet을 이용한 이미지 시맨틱 분할 성능 개선 (Improved Performance of Image Semantic Segmentation using NASNet)

  • 김형석;류기윤;김래현
    • Korean Chemical Engineering Research
    • /
    • 제57권2호
    • /
    • pp.274-282
    • /
    • 2019
  • 최근 빅데이터 과학은 사회현상 모델링을 통한 예측은 물론 강화학습과 결합하여 산업분야 자동제어까지 응용범위가 확대되고 있다. 이러한 추세 가운데 이미지 영상 데이터 활용연구는 화학, 제조, 농업, 바이오산업 등 다양한 산업분야에서 활발히 진행되고 있다. 본 논문은 신경망 기술을 활용하여 영상 데이터의 시맨틱 분할 성능을 개선하고자, U-Net의 계산효율성을 개선한 DeepU-Net 신경망에 AutoML 강화학습 알고리즘을 구현한 NASNet을 결합하였다. BRATS2015 MRI 데이터을 활용해 성능 검증을 수행하였다. 학습을 수행한 결과 DeepU-Net은 U-Net 신경망 구조보다 계산속도 향상 뿐 아니라 예측 정확도도 동등 이상의 성능이 있음을 확인하였다. 또한 이미지 시맨틱 분할 성능을 개선하기 위해서는 일반적으로 적용하는 드롭아웃 층을 빼고, DeepU-Net에 강화학습을 통해 구한 커널과 필터 수를 신경망의 하이퍼 파라미터로 선정했을 때 DeepU-Net보다 학습정확도는 0.5%, 검증정확도는 0.3% 시맨틱 분할 성능을 개선할 수 있었다. 향후 본 논문에서 시도한 자동화된 신경망을 활용해 MRI 뇌 영상진단은 물론, 열화상 카메라를 통한 이상진단, 비파괴 검사 진단, 화학물질 누출감시, CCTV를 통한 산불감시 등 다양한 분야에 응용될 수 있을 것으로 판단된다.

CT 영상 기반 근감소증 진단을 위한 AI 영상분할 모델 개발 및 검증 (Development and Validation of AI Image Segmentation Model for CT Image-Based Sarcopenia Diagnosis)

  • 이충섭;임동욱;노시형;김태훈;고유선;김경원;정창원
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권3호
    • /
    • pp.119-126
    • /
    • 2023
  • 근감소증은 국내는 2021년 질병으로 분류되었을 만큼 잘 알려져 있지 않지만 고령화사회에 진입한 선진국에서는 사회적 문제로 인식하고 있다. 근감소증 진단은 유럽노인근감소증 진단그룹(EWGSOP)과 아시아근감소증진단그룹(AWGS)에서 제시하는 국제표준지침을 따른다. 최근 진단방법으로 절대적 근육량 이외에 신체수행평가로 보행속도 측정과 일어서기 검사 등을 통하여 근육 기능을 함께 측정할 것을 권고하고 있다. 근육량을 측정하기 위한 대표적인 방법으로 DEXA를 이용한 체성분 분석 방법이 임상에서 정식으로 실시하고 있다. 또한 MRI 또는 CT의 복부 영상을 이용하여 근육량을 측정하는 다양한 연구가 활발하게 진행되고 있다. 따라서 본 논문에서는 근감소증 진단을 위해서 비교적 짧은 촬영시간을 갖는 CT의 복부영상기반으로 AI 영상 분할 모델을 개발하고 다기관 검증한 내용을 기술한다. 우리는 CT 영상 중에 요추의 L3 영역을 분류하여 피하지방, 내장지방, 근육을 자동으로 분할할 수 있는 인공지능 모델을 U-Net 모델을 사용하여 개발하였다. 또한 모델의 성능평가를 위해서 분할영역의 IOU(Intersection over Union)를 계산하여 내부검증을 진행했으며, 타 병원의 데이터를 활용하여 동일한 IOU 방법으로 외부검증을 진행한 결과를 보인다. 검증 결과를 토대로 문제점과 해결방안에 대해서 검증하고 보완하고자 했다.

Three-dimensional imaging modalities in endodontics

  • Mao, Teresa;Neelakantan, Prasanna
    • Imaging Science in Dentistry
    • /
    • 제44권3호
    • /
    • pp.177-183
    • /
    • 2014
  • Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of periradicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

Imaging Human Structures

  • Kim Byung-Tae;Choi Yong;Mun Joung Hwan;Lee Dae-Weon;Kim Sung Min
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권5호
    • /
    • pp.283-294
    • /
    • 2005
  • The Center for Imaging Human Structures (CIH) was established in December 2002 to develop new diagnostic imaging techniques and to make them available to the greater community of biomedical and clinical researchers at Sungkyunkwan University. CIH has been involved in 5 specific activities to provide solutions for early diagnosis and improved treatment of human diseases. The five area goals include: 1) development of a digital mammography system with computer aided diagnosis (CAD); 2) development of digital radiological imaging techniques; 3) development of unified medical solutions using 3D image fusion; 4) development of multi-purpose digital endoscopy; and, 5) evaluation of new imaging systems for clinical application

모노폴 안테나를 이용한 전자파기반 진단장치 (Diagnosis Based on EM Using Monopole Antenna)

  • 이종문;김혁제;이윤주;손성호;전순익
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.227-228
    • /
    • 2008
  • A diagnosis based on EM is composed of multi-channel transceiver, antennas in illumination tank, liquid and image reconstruction algorithm for solving inverse scattering problem. The antennas in diagnosis were fabricated and measured in lossy liquid. The 10dB impedance bandwidth of the antenna is 600MHz - 3.5GHz

  • PDF